
The unix programming environment

Edition 2.1, Feb 1999

Mark Burgess
Centre of Science and Technology
Faculty of Engineering, Oslo College

Copyright c
 1996/7 Mark Burgess

Permission is granted to make and distribute verbatim copies of this manual provided the

copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the

conditions for verbatim copying, provided also that the section entitled "GNU General

Public License" is included exactly as in the original, and provided that the entire resulting

derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-

guage, under the above conditions for modi�ed versions, except that the section entitled

"GNU General Public License" may be included in a translation approved by the author

instead of in the original English.

Foreword 1

Foreword

This is a revised version of the UNIX compendium which is available in printed form

and online via the WWW and info hypertext readers. It forms the basis for a one or two

semester course in UNIX. The most up-to-date version of this manual can be found at

http://www.iu.hioslo.no/~mark/unix.html.

It is a reference guide which contains enough to help you to �nd what you need from

other sources. It is not (and probably can never be) a complete and self-contained work.

Certain topics are covered in more detail than others. Some topics are included for future

reference and are not intended to be part of an introductory course, but will probably be

useful later. The chapter on X11 programming has been deleted for the time being.

Comments to Mark.Burgess@iu.hioslo.no

Oslo, June 1996

2 The unix programming environment

Welcome 3

Welcome

If you are coming to unix for the �rst time, from a Windows or MacIntosh environment,

be prepared for a rather di�erent culture than the one you are used to. Unix is not about

`products' and o�-the-shelf software, it is about open standards, free software and the ability

to change just about everything.

� What you personally might perceive as user friendliness in other systems, others might

perceive as annoying time wasting. Unix o�ers you just about every level of friendli-

ness and unfriendliness, if you choose your programs right. In this book, we take the

programmer's point of view.

� Unix is about functionality, not about simplicity. Be prepared for powerful, not neces-

sarily `simple' solutions.

You should approach Unix the way you should approach any new system: with an open

mind. The journey begins...

4 The unix programming environment

Chapter 1: Overview 5

1 Overview

In this manual the word "host" is used to refer to a single computer system { i.e. a

single machine which has a name termed its "hostname".

1.1 What is unix?

Unix is one of the most important operating system in use today, perhaps even the most

important. Since its invention around the beginning of the 1970s it has been an object of

continual research and development. UNIX is not popular because it is the best operating

system one could imagine, but because it is an extremely
exible system which is easy to

extend and modify. It is an ideal platform for developing new ideas.

Much of the success of UNIX may be attributed to the rapid pace of its development

(a development to which all of its users have been able to contribute) its e�ciency at

running programs and the many powerful tools which have been written for it over the

years, such as the C programming language, make, shell, lex and yacc and many others.

UNIX was written by programmers for programmers. It is popular in situations where

a lot of computing power is required and for database applications, where timesharing is

critical. In contrast to some operating systems, UNIX performs equally well on large scale

computers (with many processors) and small computers which �t in your suitcase!

All of the basic mechanisms required of a multi-user operating system are present in

UNIX. During the last few years it has become ever more popular and has formed the basis

of newer, though less mature, systems like NT. One reason for this that now computers

have now become powerful enough to run UNIX e�ectively. UNIX places burdens on the

resources of a computer, since it expects to be able to run potentially many programs

simultaneously.

If you are coming to UNIX from DOS you may well be used to using applications software

or helpful interactive utilities to solve every problem. UNIX is not usually like this: the

operating system has much greater functionality and provides the possibilities for making

your own, so it is less common to �nd applications software which implements the same

things. UNIX has long been in the hands of academics who are used to making their own

applications or writing their own programs, whereas as the DOS world has been driven by

businesses who are willing to spend money on software. For that reason commerical UNIX

software is often very expensive and therefore not available at this college. On the other

hand, the
exibility of UNIX means that it is easy to write programs and it is possible to

fetch gigabytes of free software from the internet to suit your needs. It may not look like

what you are used to on your PC, but then you have to remember that UNIX users are a

di�erent kind of animal altogether

Like all operating systems, UNIX has many faults. The biggest problem for any operating

system is that it evolves without being redesigned. Operating systems evolve as more and

more patches and hacks are applied to solve day-to-day problems. The result is either a mess

which works somehow (like UNIX) or a blank refusal to change (like DOS or MacIntosh).

From a practical perspective, Unix is important and successful because it is a multi-process

system which

� has an enormous functionality built in, and the capacity to adapt itself to changing

technologies,

6 The unix programming environment

� is relatively portable,

� is good at sharing resources (but not so good at security),

� has tools which are each developed to do one thing well,

� allows these tools to be combined in every imaginable way, using pipes and channeling

of data streams,

� incorporates networking almost trivially, because all the right mechanisms are already

there for providing services and sharing, building client-server pairs etc,.

� it is very adaptable and is often used to develop new ideas because of the rich variety

of tools it possesses.

Unix has some problems: it is old, it contains a lot of rubbish which no one ever bothered

to throw away. Although it develops quickly (at light speed compared to either DOS or

MacIntosh) the user interface has been the slowest thing to change. Unix is not user-

friendly for beginners, it is user-friendly for advanced users: it is made for users who know

about computing. It sometimes makes simple things di�cult, but above all it makes things

possible!

The aim of this introduction is to

� introduce the unix system basics and user interface,

� develop the unix philosophy of using and combining tools,

� learn how to make new tools and write software,

� learn how to understand existing software.

To accomplish this task, we must �rst learn something about the shell (the way in which

UNIX starts programs). Later we shall learn how to solve more complex problems using

Perl and C. Each of these is a language which can be used to put UNIX to work. We must

also learn when to use which tool, so that we do not waste time and e�ort. Typical uses

for these di�erent interfaces are

shell Command line interaction, making scripts which perform simple jobs such as

running programs in batch, installing new software, simple system con�guration

and administration.

perl Text interpretation, text formatting, output �lters, mail robots, WWW cgi

(common gateway interface) scripts in forms, password testing, simple database

manipulation, simple client-server applications.

C Nearly all of UNIX is written in C. Any program which cannot be solved quickly

using shell or perl can be written in C. One advantage is that C is a compiled

language and many simple errors can be caught at compile time.

Much of UNIX's recent popularity has been a result of its networking abilities: unix is

the backbone of the internet. No other widely available system could keep the internet alive

today.

Once you have mastered the unix interface and philosophy you will �nd that i) the PC

and MacIntosh window environments seem to be easy to use, but simplistic and primitive

by comparison; ii) UNIX is far from being the perfect operating system|it has a whole

di�erent set of problems and
aws.

Chapter 1: Overview 7

The operating system of the future will not be UNIX as we see it today, nor will is be

DOS or MacIntosh, but one thing is for certain: it will owe a lot to the UNIX operating

system and will contain many of the tools and mechanisms we shall describe below.

1.2 Flavours of unix

Unix is not a single operating system. It has branched out in many di�erent directions

since it was introduced by AT&T. The most important `fork()' in its history happened

early on when the university of Berkeley, California created the BSD (Berkeley Software

Distribution), adding network support and the C-shell.

Here are some of the most common implementations of unix.

BSD: Berkeley, BSD

SunOS: Sun Microsystems, BSD/sys 5

Solaris: Sun Microsystems, Sys 5/BSD

Ultrix: Digital Equipment Corperation, BSD

OSF 1: Digital Equipment Corperation, BSD/sys 5

HPUX: Hewlett-Packard, Sys 5

AIX: IBM, Sys 5 / BSD

IRIX: Silicon Graphics, Sys 5

GNU/Linux:

GNU, BSD/Posix

1.3 How to use this reference guide

This programming guide is something between a user manual and a tutorial. The infor-

mation contained here should be su�cient to get you started with the unix system, but it

is far from complete.

To use this programming guide, you will need to work through the basics from each

chapter. You will �nd that there is much more information here than you need straight

away, so try not to be overwhelmed by the amount of material. Use the contents and the

indices at the back to �nd the information you need. If you are following a one-semester

UNIX course, you should probably concentrate on the following:

� The remainder of this introduction

� The detailed knowledge of the C shell

� An appreciation of the Bourne shell

� A detailed knowledge of Perl, guided by chapter 6. This chapter provides pointers on

how to get started in perl. It is not a substitute for the perl book.

� Everything in chapter 7 about C programming. This chapter is written in note form,

since it is assumed that you know a lot about C programming already.

� A sound appreciation of chapter 8 on network programming.

8 The unix programming environment

The only way to learn UNIX is to sit down and try it. As with any new thing, it is a

pain to get started, but once you are started, you will probably come to agree that UNIX

contains a wealth of possibilities, perhaps more than you had ever though was possible or

useful!

One of the advantages of the UNIX system is that the entire UNIX manual is available

on-line. You should get used to looking for information in the online manual pages. For

instance, suppose you do not remember how to create a new directory, you could do the

following:

nexus% man -k dir

dir ls (1) - list contents of directories

dirname dirname (1) - strip non-directory suffix from file name

dirs bash (1) - bash built-in commands, see bash(1)

find find (1) - search for files in a directory hierarchy

ls ls (1) - list contents of directories

mkdir mkdir (1) - make directories

pwd pwd (1) - print name of current/working directory

rmdir rmdir (1) - remove empty directories

The `man -k' command looks for a keyword in the manual and lists all the references it �nds.

The command `apropos' is completely equivalent to `man -k'. Having discovered that the

command to create a directory is `mkdir' you can now look up the speci�c manaul page on

`mkdir' to �nd out how to use it:

man mkdir

Some but no all of the UNIX commands also have a help option which is activated with the

`-h' or `--help' command-line option.

dax% mkdir --help

Usage: mkdir [OPTION] DIRECTORY...

-p, --parents no error if existing, make parent directories as needed

-m, --mode=MODE set permission mode (as in chmod), not 0777 - umask

--help display this help and exit

--version output version information and exit

dax%

1.4 NEVER-DO's in UNIX

There are some things that you should never do in UNIX. Some of these will cause you

more serious problems than others. You can make your own list as you discover more.

� You should NEVER EVER switch o� the power on a Unix computer unless you know

what you are doing. A Unix machine is not like a PC running DOS. Even when you

are not doing anything, the system is working in the background. If you switch o� the

power, you could interrupt the system while it is writing to the disk drive and destroy

your disk. You must also remember that several users might be using the system even

though you cannot see them: they do not have to be sitting at the machine, they could

be logged in over the network. If you switch o� the power, you might ruin their valuable

work.

Chapter 1: Overview 9

� Once you have deleted a UNIX �le using rm it is impossible to recover it! Don't use

wildcards with rm without thinking quite carefully about what you are doing! It has

happened to very many users throughout the history of UNIX that one tries to type

rm *~

but instead, by a slip of the hand, one writes

rm * ~

Unix then takes these wildcards in turn, so that the �rst command is rm * which deletes

all of your �les! BE CAREFUL!

� Don't ever call a program or an important �le `core'. Many scripts go around deleting

�les called `core' because the, when a program crashes, UNIX dumps the entire kernel

image to a �le called `core' and these �les use up a lot of disk space. If you call a �le

`core' it might get deleted!

� Don't call test programs test. There is a UNIX command which is already called

test and chances are that when you try to run your program you will start the UNIX

command instead. This can cause a lot of confusion because the UNIX command

doesn't seem to do very much at all!

1.5 What you should know before starting

1.5.1 One library: several interfaces

The core of unix is the library of functions (written in C) which access the system.

Everything you do on a unix system goes through this set of functions. However, you can

choose your own interface to these library functions. Unix has very many di�erent interfaces

to its libraries in the form of languages and command interpreters.

You can use the functions directly in C, or you can use command programs like `ls',

`cd' etc. These functions just provide a simple user interface to the C calls. You can also

use a variety of `script' languages: C-shell, Bourne shell, Perl, Tcl, scheme. You choose the

interface which solves your problem most easily.

1.5.2 Unix commands are �les

With the exception of a few simple commands which are built into the command inter-

preter (shell), all unix commands and programs consist of executable �les. In other words,

there is a separate executable �le for each command. This makes it extremely simple to

add new commands to the system. One simply makes a program with the desired name

and places it in the appropriate directory.

Unix commands live in special directories (usually called bin for binary �les). The

location of these directories is recorded in a variable called path or PATH which is used by

the system to search for binaries. We shall return to this in more detail in later chapters.

1.5.3 Kernel and Shell

Since users cannot command the kernel directly, UNIX has a command language known

as the shell. The word shell implies a layer around the kernel. A shell is a user interface,

or command interpreter.

10 The unix programming environment

There are two main versions of the shell, plus a number of enhancements.

/bin/sh The Bourne Shell. The shell is most often used for writing system scripts. It is

part of the original unix system.

/bin/csh The C-shell. This was added to unix by the Berkeley workers. The commands

and syntax resemble C code. C-shell is better suited for interactive work than

the Bourne shell.

The program tcsh is a public-domain enhancement of the csh and is in common use.

Two improved versions of the Bourne shell also exist: ksh, the Korn shell and bash, the

Bourne-again shell.

Although the shells are mainly tools for typing in commands (which are excutable �les

to be loaded and run), they contain features such as aliases, a command history, wildcard-

expansions and job control functions which provide a comfortable user environment.

1.5.4 The role of C

Most of the unix kernel and daemons are written in the C programming language1. Calls

to the kernel and to services are made through functions in the standard C library. The

commands like chmod, mkdir and cd are all C functions. The binary �les of the same name

/bin/chmod, /bin/mkdir etc. are just trivial "wrapper" programs for these C functions.

Until Solaris 2, the C compiler was a standard part of the UNIX operating system, thus

C is the most natural language to program in in a UNIX environment. Some tools are

provided for C programmers:

dbx A symbolic debugger. Also gdb, xxgdb ddd.

make A development tool for compiling large programs.

lex A `lexer'. A program which generates C code to recognize words of text.

yacc A `parser'. This is a tool which generates C code for checking the syntax of

groups of textual words.

rpcgen A protocol compiler which generates C code from a higher level langauge, for

programming RPC applications.

1.5.5 Stdin, stdout, stderr

Unix has three logical streams or �les which are always open and are available to any

program.

stdin The standard input - �le descriptor 0.

stdout The standard output - �le descriptor 1.

stderr The standard error - �le descriptor 2.

The names are a part of the C language and are de�ned as pointers of type FILE.

1 In particular they are written in Kernighan and Ritchie C, not the newer ANSI standard

C.

Chapter 1: Overview 11

#include <stdio.h>

/* FILE *stdin, *stdout, *stderr; */

fprintf(stderr,"This is an error message!\n");

The names are `logical' in the sense that they do not refer to a particular device, or a

particular place for information to come from or go. Their role is analogous to the `.' and

`..' directories in the �lesystem. Programs can write to these �les without worrying about

where the information comes from or goes to. The user can personally de�ne these places

by redirecting standard I/O. This is discussed in the next chapter.

A separate stream is kept for error messages so that error output does not get mixed up

with a program's intended output.

1.6 The superuser (root) and nobody

When logged onto a UNIX system directly, the user whose name is root has unlimited

access to the �les on the system. root can also become any other user without having to

give a password. root is reserved for the system administrator or trusted users.

Certain commands are forbidden to normal users. For example, a regular user should

not be able to halt the system, or change the ownership of �les (see next paragraph). These

things are reserved for the root or superuser.

In a networked environment, root has no automatic authority on remote machines. This

is to prevent the system administrator of one machine in Canada from being able to edit

�les on another in China. He or she must log in directly and supply a password in order to

gain access privileges. On a network where �les are often accessible in principle to anyone,

the username root gets mapped to the user nobody, who has no rights at all.

1.7 The �le hierarchy

Unix has a hierachical �lesystem, which makes use of directories and sub-directories to

form a tree. The root of the tree is called the root �lesystem or `/'. Although the details of

where every �le is located di�er for di�erent versions of unix, some basic features are the

same. The main sub-directories of the root directory together with the most important �le

are shown in the �gure. Their contents are as follows.

`/bin' Executable (binary) programs. On most systems this is a separate directory to

/usr/bin. In SunOS, this is a pointer (link) to /usr/bin.

`/etc' Miscellaneous programs and con�guration �les. This directory has become very

messy over the history of UNIX and has become a dumping ground for almost

anything. Recent versions of unix have begun to tidy up this directory by

creating subdirectories `/etc/mail', `/etc/services' etc!

`/usr' This contains the main meat of UNIX. This is where application software lives,

together with all of the basic libraries used by the OS.

`/usr/bin'

More executables from the OS.

12 The unix programming environment

`/usr/local'

This is where users' custom software is normally added.

`/sbin' A special area for statically linked system binaries. They are placed here to

distinguish commands used solely by the system administrator from user com-

mands and so that they lie on the system root partition where they are guar-

anteed to be accessible during booting.

`/sys' This holds the con�guration data which go to build the system kernel. (See

below.)

`/export'

Network servers only use this. This contains the disk space set aside for client

machines which do not have their own disks. It is like a `virtual disk' for diskless

clients.

`/dev, /devices'

A place where all the `logical devices' are collected. These are called `device

nodes' in unix and are created by mknod. Logical devices are UNIX's o�cial

entry points for writing to devices. For instance, /dev/console is a route to the

system console, while /dev/kmem is a route for reading kernel memory. Device

nodes enable devices to be treated as though they were �les.

`/home'

(Called /users on some systems.) Each user has a separate login directory where

�les can be kept. These are normally stored under /home by some convention

decided by the system administrator.

`/var' System 5 and mixed systems have a separate directory for spooling. Under old

BSD systems, /usr/spool contains spool queues and system data. /var/spool

and /var/adm etc are used for holding queues and system log �les.

`/vmunix' This is the program code for the unix kernel (see below). On HPUX systems

with �le is called `hp-ux'. On linux it is called `linux'.

`/kernel' On newer systems the kernel is built up from a number of modules which are

placed in this directory.

Every unix directory contains two `virtual' directories marked by a single dot and two dots.

ls -a

. ..

The single dot represents the directory one is already in (the current directory). The double

dots mean the directory one level up the tree from the current location. Thus, if one writes

cd /usr/local

cd ..

the �nal directory is /usr. The single dot is very useful in C programming if one wishes to

read `the current directory'. Since this is always called `.' there is no need to keep track of

what the current directory really is.

`.' and `..' are `hard links' to the true directories.

Chapter 1: Overview 13

1.8 Symbolic links

A symbolic link is a pointer or an alias to another �le. The command

ln -s fromfile /other/directory/tolink

makes the �le fromfile appear to exist at /other/directory/tolink simultaneously. The

�le is not copied, it merely appears to be a part of the �le tree in two places. Symbolic

links can be made to both �les and directories.

A symbolic link is just a small �le which contains the name of the real �le one is interested

in. It cannot be opened like an ordinary �le, but may be read with the C call readlink()

See Section 9.8.3 [lstat and readlink], page 127. If we remove the �le a symbolic link points

to, the link remains { it just points nowhere.

1.9 Hard links

A hard link is a duplicate inode in the �lesystem which is in every way equivalent to the

original �le inode. If a �le is pointed to by a hard link, it cannot be removed until the link

is removed. If a �le has n hard links { all of them must be removed before the �le can be

removed. The number of hard links to a �le is stored in the �lesystem index node for the

�le.

14 The unix programming environment

Chapter 2: Getting started 15

2 Getting started

If you have never met unix, or another multiuser system before, then you might �nd the

idea daunting. There are several things you should know.

2.1 Logging in

Each time you use unix you must log on to the system by typing a username and a

password. Your login name is sometimes called an `account' because some unix systems

implement strict quotas for computer resources which have to be paid for with real money1.
� �

login: mark

password:

 	

Once you have typed in your password, you are `logged on'. What happens then depends

on what kind of system you are logged onto and how. If you have a colour monitor and

keyboard in front of you, with a graphical user interface, you will see a number of windows

appear, perhaps a menu bar. You then use a mouse and keyboard just like any other system.

This is not the only way to log onto unix. You can also log in remotely, from another

machine, using the telnet or rlogin programs. If you use these programs, you will normally

only get a text or command line interface (though graphics can still be arranged).

Once you have logged in, a short message will be printed (called Message of the Day

or motd) and you will see the C-shell prompt: the name of the host you are logged onto

followed by a percent sign, e.g.
� �

SunOS Release 5.5 Version Generic [UNIX(R) System V Release 4.0]

Copyright (c) 1983-1995, Sun Microsystems, Inc.

Please report problems to sysadm@iu.hioslo.no

dax%

 	

Remember that every unix machine is a separate entity: it is not like logging onto a PC

system where you log onto the `network' i.e. the PC �le server. Every unix machine is a

server. The network, in unix-land, has lots of players.

The �rst thing you should do once you have logged on is to set a reliable password.

A poor password might be okay on a PC which is not attached to a large network, but

once you are attached to the internet, you have to remember that the whole world will be

trying to crack your password. Don't think that no one will bother: some people really

have nothing better to do. A password should not contain any word that could be in a

list of words (in any language), or be a simple concatenation of a word and a number (e.g.

1 This is seldom true these days.

16 The unix programming environment

mark123). It takes seconds to crack such a password. Choose instead something which

is easy to remember. Feel free to use the PIN number from your bankers card in your

password! This will leave you with fewer things to remember. e.g. Ma9876rk). Passwords

can be up to eight characters long.

Some sites allow you to change your password anywhere. Other sites require you to log

onto a special machine to change your password:
� �

dax%

dax% passwd

Change your password on host nexus

You cannot change it here

dax% rlogin nexus

password: ******

nexus% passwd

Changing password for mark

Enter login password: ********

Enter new password: ********

Reenter new passwd: ********

 	

You will be prompted for your old password and your new password twice. If your network

is large, it might take the system up to an hour or two to register the change in your

password, so don't forget the old one right away!

2.2 Mouse buttons

Unix has three mouse buttons. On some PC's running GNU/Linux or some other PC

unix, there are only two, but the middle mouse button can be simulated by pressing both

mouse buttons simultaneously. The mouse buttons have the following general functions.

They may also have additional functions in special software.

index �nger

This is used to select and click on objects. It is also used to mark out areas

and copy by dragging. This is the button you normally use.

middle �nger

Used to pull down menus. It is also used to paste a marked area somewhere at

the mouse position.

outer �nger

Pulls down menus.

On a left-handed system right and left are reversed.

2.3 E-mail

Reading electronic mail on unix is just like any other system, but there are many pro-

grams to choose from. There are very old programs from the seventies such as

Chapter 2: Getting started 17

mail

and there are fully graphical mail programs such as

tkrat

mailtool

Choose the program you like best. Not all of the programs support modern multimedia

extensions because of their age. Some programs like tkrat have immediate mail noti�cation

alerts. To start a mail program you just type its name. If you have an icon-bar, you can

click on the mail-icon.

2.4 Simple commands

Inexperienced computer users often prefer to use �le-manager programs to avoid typing

anything. With a mouse you can click your way through directories and �les without having

to type anything (e.g. the fmgr or tkdesk programs). More experienced users generally

�nd this to be slow and tedious after a while and prefer to use written commands. Unix

has many short cuts and keyboard features which make typed commands extremely fast

and much more powerful than use of the mouse.

If you come from a DOS environment, the unix commands can be a little strange.

Because they stem from an era when keyboards had to be hit with hammer force, and

machines were very slow, the command names are generally as short as possible, so they

seem pretty cryptic. Some familar ones which DOS borrowed from unix include,

cd

mkdir

which change to a new directory and make a new directory respectively. To list the �les in

the current directory you use,

ls

To rename a �le, you `move' it:

mv old-name new-name

2.5 Text editing and word processing

Text editing is one of the things which people spend most time doing on any computer.

It is important to distingiush text editing from word processing. On a PC or MacIntosh,

you are perhaps used to Word or WordPerfect for writing documents.

Unix has a Word-like program called lyx, but for the most part Unix users do not

use word processors. It is more common in the unix community to write all documents,

regardless of whether they are letters, books or computer programs, using a non-formatting

text editor. (Unix word processors like Framemaker do exist, but they are very expensive.

A version of MS-Word also exists for some unices.) Once you have written a document in

a normal text editor, you call up a text formatter to make it pretty. You might think this

strange, but the truth of the matter is that this two-stage process gives you the most power

and
exibilty|and that is what most unix folks like.

For writing programs, or anything else, you edit a �le by typing:

18 The unix programming environment

emacs myfile

emacs is one of dozens of text-editors. It is not the simplest or most intuitive, but it is

the most powerful and if you are going to spend time learning an editor, it wouldn't do

any harm to make it this one. You could also click on emacs' icon if you are relying on a

window system. Emacs is almost certainly the most powerful text editor that exists on any

system. It is not a word-processor, it not for formatting printed documents, but it can be

linked to almost any other program in order to format and print text. It contains a powerful

programming language and has many intelligent features. We shall not go into the details

of document formatting in this book, but only mention that programs like troff and Tex

or Latex are used for this purpose to obtain typset-quality printing. Text formatting is an

area where Unix folks do things di�erently to PC folks.

Chapter 3: The login environment 19

3 The login environment

Unix began as a timesharing mainframe system in the seventies, when the only terminals

available were text based teletype terminals or tty-s. Later, the Massachusetts Institute of

Technology (MIT) developed the X-windows interface which is now a standard across UNIX

platforms. Because of this history, the X-window system works as a front end to the standard

UNIX shell and interface, so to understand the user environment we must �rst understand

the shell.

3.1 Shells

A shell is a command interpreter. In the early days of unix, a shell was the only way

of issuing commands to the system. Nowadays many window-based application programs

provide menus and buttons to perform simple commands, but the UNIX shell remains the

most powerful and
exible way of interacting with the system.

After logging in and entering a password, the unix process init starts a shell for the user

logging in. Unix has several di�erent kinds of shell to choose from, so that each user can

pick his/her favourite command interface. The type of shell which the system starts at login

is determined by the user's entry in the passwd database. On most systems, the standard

login shell is a variant of the C-shell.

Shells provide facilities and commands which

� Start and stop processes (programs)

� Allow two processes to communicate through a pipe

� Allow the user to redirect the
ow of input or output

� Allow simple command line editing and command history

� De�ne aliases to frequently used commands

� De�ne global "environment" variables which are used to con�gure the default behaviour

of a variety of programs. These lie in an "associated array" for each process and may

be seen with the `env' command. Environment variables are inherited by all processes

which are started from a shell.

� Provide wildcard expansion (joker notation) of �lenames using `*,?,[]'

� Provide a simple script language, with tests and loops, so that users can combine system

programs to create new programs of their own.

� Change and remember the location of the current working directory, or location within

the �le hierarchy.

The shell does not contain any more speci�c functions|all other commands, such as

programs which list �les or create directories etc., are executable programs which are in-

dependent of the shell. When you type `ls', the shell looks for the executable �le called

`ls' in a special list of directories called the command path and attempts to start this pro-

gram. This allows such programs to be developed and replaced independently of the actual

command interpreter.

Each shell which is started can be customized and con�gured by editing a setup �le.

For the C-shell and its variants this �le is called `.cshrc', and for the Bourne shell and

its variants it is called `.profile'. (Note that �les which begin with leading dots are

20 The unix programming environment

not normally visible with the `ls' command. Use `ls -a' to view these.) Any commands

which are placed in these �les are interpreted by the shell before the �rst command prompt

is issued. These �les are typically used to de�ne a command search path and terminal

characteristics.

On each new command line you can use the cursor keys to edit the line. The up-arrow

browses back through earlier commands. CTRL-a takes you to the start of the line. CTRL-e

takes you to the end of the line. The hTABi can be used to save typing with the `completion'

facility See Section 5.7 [Command/�lename completion], page 46.

3.1.1 Shell commands generally

Shell commands are commands like cp, mv, passwd, cat, more, less, cc, grep, ps etc..

Very few commands are actually built into the shell command line interpreter, in the

way that they are in DOS { commands are mostly programs which exist as �les. When we

type a command, the shell searches for a program with the same name and tries to execute

it. The �le must be executable, or a Command not found error will result. To see what

actually happens when you type a command like gcc, try typing in the following C-shell

commands directly into a C-shell. (We shall discuss these commands soon.)

foreach dir ($path) # for every directory in the list path

if (-x $dir/gcc) then # if the file is executable

echo Found $dir/gcc # Print message found!

break # break out of loop

else

echo Searching $dir/gcc

endif

end

The output of this command is something like

Searching /usr/lang/gcc

Searching /usr/openwin/bin/gcc

Searching /usr/openwin/bin/xview/gcc

Searching /physics/lib/framemaker/bin/gcc

Searching /physics/motif/bin/gcc

Searching /physics/mutils/bin/gcc

Searching /physics/common/scripts/gcc

Found /physics/bin/gcc

If you type

echo $path

you will see the entire list of directories which are searched by the shell. If we had left

out the `break' command, we might have discovered that UNIX often has several programs

with the same name, in di�erent directories! For example,

/bin/mail

/usr/ucb/mail

/bin/Mail

/bin/make

/usr/local/bin/make.

Chapter 3: The login environment 21

Also, di�erent versions of unix have di�erent conventions for placing the commands in

directories, so the path list needs to be di�erent for di�erent types of unix machine. In the

C-shell a few basic commands like cd and kill are built into the shell (as in DOS).

You can �nd out which directory a command is stored in using the

which

command. For example

nexus% which cd

cd: shell built-in command.

nexus% which cp

/bin/cp

nexus%

which only searches the directories in $path and quits after the �rst match, so if there

are several commands with the same name, you will only see the �rst of them using which.

Finally, in the C-shell, the which command is built in. In the Bourne shell it is a

program:

nexus% which which

which: shell built-in command.

nexus% sh

$ which which

/bin/which

$ exit

nexus%

Take a look at the script /usr/ucb/which. It is a script written in the C-shell.

3.1.2 Environment and shell variables

Environment variables are variables which the shell keeps. They are normally used to

con�gure the behaviour of utility programs like lpr (which sends a �le to the printer) and

mail (which reads and sends mail) so that special options do not have to be typed in every

time you run these programs.

Any program can read these variables to �nd out how you have con�gured your working

environment. We shall meet these variables frequently. Here are some important variables

PATH # The search path for shell commands (sh)

TERM # The terminal type (sh and csh)

DISPLAY # X11 - the name of your display

LD_LIBRARY_PATH # Path to search for object and shared libraries

HOST # Name of this unix host

PRINTER # Default printer (lpr)

HOME # The path to your home directory (sh)

path # The search path for shell commands (csh)

term # The terminal type (csh)

noclobber # See below under redirection

prompt # The default prompt for csh

home # The path to your home directory (csh)

22 The unix programming environment

These variables fall into two groups. Traditionally the �rst group always have names

in uppercase letters and are called environment variables, whereas variables in the second

group have names with lowercase letters and are called shell variables{ but this is only a

convention. The uppercase variables are global variables, whereas the lower case variables

are local variables. Local variables are not de�ned for programs or sub-shells started by the

current shell, while global variables are inherited by all sub-shells.

The Bourne-shell and the C-shell use these conventions di�erently and not always con-

sistently. You will see how to de�ne these below. For now you just have to know that you

can use the following commands from the C-shell to list these variables. The command env

can be used in either C-shell or Bourne shell to see all of the de�ned environment variables.

3.1.3 Wildcards

Sometimes you want to be able to refer to several �les in one go. For instance, you

might want to copy all �les ending in `.c' to a new directory. To do this one uses wildcards.

Wildcards are characters like * ? which stand for any character or group of characters. In

card games the joker is a `wild card' which can be substituted for any other card. Use of

wildcards is also called �lename substitution in the unix manuals, in the sections on sh and

csh.

The wildcard symbols are,

`?' Match single character. e.g. ls /etc/rc.????

`*' Match any number of characters. e.g. ls /etc/rc.*

`[...]' Match any character in a list enclosed by these brackets. e.g. ls [abc].C

Here are some examples and explanations.

`/etc/rc.????'

Match all �les in /etc whose �rst three characters are rc. and are 7 characters

long.

`*.c' Match all �les ending in `.c' i.e. all C programs.

`*.[Cc]' List all �les ending on `.c' or `.C' i.e. all C and C++ programs.

`*.[a-z]' Match any �le ending in .a, .b, .c, ... up to .z etc.

It is important to understand that the shell expands wildcards. When you type a command,

the program is not invoked with an argument that contains * or ?. The shell expands the

special characters �rst and invokes commands with the entire list of �les which match the

patterns. The programs never see the wildcard characters, only the list of �les they stand

for. To see this in action, you can type

echo /etc/rc.*

which gives

/etc/rc /etc/rc.boot /etc/rc.ip /etc/rc.local /etc/rc.local%

/etc/rc.local~ /etc/rc.single /etc/rc~

Chapter 3: The login environment 23

All shell commands are invoked with a command line of this form. This has an important

corollary. It means that multiple renaming cannot work !

Unix �les are renamed using the mv command. In many microcomputer operating sys-

tems one can write

rename *.x *.y

which changes the �le extension of all �les ending in `.x' to the same name with a `.y'

extension. This cannot work in unix, because the shell tries expands everything before

passing the arguments to the command line.

The local shell variable noglob switches o� wildcard expansion in the C shell, but you

still cannot rename multiple �les using mv. Some free-software programs make this possible.

3.1.4 Regular expressions

The wildcards belong to the shell. They are used for matching �lenames. UNIX has

a more general and widely used mechanism for matching strings, this is through regular

expressions.

Regular expressions are used by the egrep utility, text editors like ed, vi and emacs

and sed and awk. They are also used in the C programming language for matching input

as well as in the Perl programming language and lex tokenizer. Here are some examples

using the egrep command which print lines from the �le /etc/rc which match certain

conditions. The contruction is part of egrep. Everything in between these symbols is

a regular expression. Notice that special shell symbols ! * & have to be preceded with a

backslash \ in order to prevent the shell from expanding them!

Print all lines beginning with a comment

egrep '(^#)' /etc/rc

Print all lines which DON'T begin with

egrep '(^[^#])' /etc/rc

Print all lines beginning with e, f or g.

egrep '(^[efg])' /etc/rc

Print all lines beginning with uppercase

egrep '(^[A-Z])' /etc/rc

Print all lines NOT beginning with uppercase

egrep '(^[^A-Z])' /etc/rc

Print all lines containing ! * &

egrep '([\!*\&])' /etc/rc

24 The unix programming environment

All lines containing ! * & but not starting

egrep '([^#][\!*\&])' /etc/rc

Regular expressions are made up of the following `atoms'.

These examples assume that the �le `/etc/rc' exists. If it doesn't exist on the machine

you are using, try to �nd the equivalent by, for instance, replacing /etc/rc with /etc/rc*

which will try to �nd a match beginning with the rc.

`.' Match any single character except the end of line.

`^' Match the beginning of a line as the �rst character.

`$' Match end of line as last character.

`[..]' Match any character in the list between the square brackets.(see below).

`*' Match zero or more occurrances of the preceding expression.

`+' Match one or more occurrences of the preceding expression.

`?' Match zero or one occurrance of the preceding expression.

You can �nd a complete list in the unix manual pages. The square brackets above are

used to de�ne a class of characters to be matched. Here are some examples,

� If the square brackets contain a list of characters, $[a-z156]$ then a single occurrance

of any character in the list will match the regular expression: in this case any lowercase

letter or the numbers 1, 5 and 6.

� If the �rst character in the brackets is the caret symbol `^' then any character except

those in the list will be matched.

� Normally a dash or minus sign `-' means a range of characters. If it is the �rst character

after the `[' or after `[^' then it is treated literally.

3.1.5 Nested shell commands and \

The backwards apostrophes `...` can be used in all shells and also in the programming

language Perl. When these are encountered in a string the shell tries to execute the com-

mand inside the quotes and replace the quoted expression by the result of that command.

For example:

unix% echo "This system's kernel type is `/bin/file /vmunix`"

This system's kernel type is /vmunix: sparc executable not stripped

unix% foreach file (`ls /etc/rc*`)

? echo I found a config file $file

? echo Its type is `/bin/file $file`

? end

I found a config file /etc/rc

Its type is /etc/rc: executable shell script

I found a config file /etc/rc.boot

Its type is /etc/rc.boot: executable shell script

Chapter 3: The login environment 25

I found a config file /etc/rc.ip

Its type is /etc/rc.ip: executable shell script

I found a config file /etc/rc.local

Its type is /etc/rc.local: ascii text

I found a config file /etc/rc.local~

Its type is /etc/rc.local~: ascii text

I found a config file /etc/rc.single

Its type is /etc/rc.single: executable shell script

I found a config file /etc/rc~

Its type is /etc/rc~: executable shell script

This is how we insert the result of a shell command into a text string or variable.

3.2 UNIX command overview

3.2.1 Important keys

hCTRL-Ai Jump to start of line. If `screen' is active, this pre�xes all control key com-

mands for `screen' and then the normal CTRL-A is replaced by CTRL-a a.

hCTRL-Ci Interrupt or break key. Sends signal 15 to a process.

hCTRL-Di Signi�es `EOF' (end of �le) or shows expansion matches in command/�lename

completion See Section 5.7 [Command/�lename completion], page 46.

hCTRL-Ei Jump to end of line.

hCTRL-Li Clear screen in newer shells and in emacs. Same as `clear' in the shell.

hCTRL-Zi Suspend the present process, but do not destroy it. This sends signal 18 to the

process.

3.2.2 Alternative shells

bash The Bourne Again shell, an improved sh.

csh The standard C-shell.

jsh The same as sh, with C-shell style job control.

ksh The Korn shell, an improved sh.

sh The original Bourne shell.

sh5 On ULTRIX systems the standard Bourne shell is quite stupid. sh5 corresponds

to the normal Bourne shell on these systems.

tcsh An improved C-shell.

zsh An improved sh.

26 The unix programming environment

3.2.3 Window based terminal emulators

xterm The standard X11 terminal window.

shelltool, cmdtool

Openwindows terminals from Sun Microsystems. These are not completely X11

compatible during copy/paste operations.

screen This is not a window in itself, but allows you to emulate having several windows

inside a single (say) xterm window. The user can switch between di�erent win-

dows and open new ones, but can only see one window at a time See Section 3.5

[Multiple screens], page 34.

3.2.4 Remote shells and logins

rlogin Login onto a remote unix system.

rsh Open a shell on a remote system (require access rights).

telnet Open a connection to a remove system using the telnet protocol.

3.2.5 Text editors

ed An ancient line-editor.

vi Visual interface to ed. This is the only "standard" unix text editor supplied by

vendors.

emacs The most powerful UNIX editor. A fully con�gurable, user programmable

editor which works under X11 and on tty-terminals.

xemacs A pretty version of emacs for X11 windows.

pico A tty-terminal only editor, comes as part of the PINE mail package.

xedit A test X11-only editor supplied with X-windows.

textedit A simple X11-only editor supplied by Sun Microsystems.

3.2.6 File handling commands

ls List �les in speci�ed directory (like dir on other systems).

cp Copy �les.

mv Move or rename �les.

touch Creates an empty new �le if none exists, or updates date and time stamps on

existing �les.

rm, unlink

Remove a �le or link (delete).

mkdir, rmdir

Make or remove a directory. A directory must be empty in order to be able to

remove it.

Chapter 3: The login environment 27

cat Concatenate or join together a number of �les. The output is written to the

standard output by default. Can also be used to simply print a �le on screen.

lp, lpr Line printer. Send a �le to the default printer, or the printer de�ned in the

`PRINTER' evironment variable.

lpq, lpstat

Show the status of the print queue.

3.2.7 File browsing

more Shows one screen full at a time. Possibility to search for a string and edit the

�le. This is like `type �le | more' in DOS.

less An enhanced version of more.

mc Midnight commander, a free version of the `Norton Commander' PC utility for

unix. (Only for non-serious UNIX users...)

fmgr A window based �le manager with icons and all that nonsense.

3.2.8 Ownership and granting access permission

chmod Change �le access mode.

chown, chgrp

Change owner and group of a �le. The GNU version of chown allows both these

operations to be performed together using the syntax chown owner.group �le.

acl On newer Unices, Access control lists allow access to be granted on a per-user

basis rather than by groups.

3.2.9 Extracting from and rebuilding �les

cut Extract a column in a table

paste Merge several �les so that each �le becomes a column in a table.

sed A batch text-editor for searching, replacing and selecting text without human

intervention.

awk A prerunner to the Perl language, for extracting and modifying text�les.

rmcr Strip carriage return (ASCII 13) characters from a �le. Useful for converting

DOS �les to unix.

3.2.10 Locating �les

find Search for �les from a speci�ed directory using various criteria.

locate Fast search in a global �le database for �les containing a search-string.

whereis Look for a command and its documentation on the system.

28 The unix programming environment

3.2.11 Disk usage.

du Show number of blocks used by a �le or �les.

df Show the state of usage for one or more disk partitions.

3.2.12 Show other users logged on

users Simple list of other users.

finger Show who is logged onto this and other systems.

who List of users logged into this system.

w Long list of who is logged onto this system and what they are doing.

3.2.13 Contacting other users

write Send a simple message to the named user, end with hCTRL-Di. The command

`mesg n' switches o� messages receipt.

talk Interactive two-way conversation with named user.

irc Internet relay chat. A conferencing system for realtime multi-user conversa-

tions, for addicts and losers.

3.2.14 Mail senders/readers

mail The standard (old) mail interface.

Mail Another mail interface.

elm Electronic Mail program. Lots of functionality but poor support for multimedia.

pine Pine Is No-longer Elm. Improved support for multimedia but very slow and

rather stupid at times. Some of the best features of elm have been removed!

mailtool Sun's openwindows client program.

rmail A mail interface built into the emacs editor.

netscape mail

A mail interface built into the netscape navigator.

zmail A commerical mail package.

tkrat A graphical mail reader which supports most MIME types, written in tcl/tk.

This program has a nice feel and allows you to create a searchable database of

old mail messages, but has a hopeless locking mechanism.

3.2.15 File transfer

ftp The File Transfer program - copies �les to/from a remote host.

ncftp An enhanced ftp for anonymous login.

Chapter 3: The login environment 29

3.2.16 Compilers

cc The C compiler.

CC The C++ compiler.

gcc The GNU C compiler.

g++ The GNU C++ compiler.

ld The system linker/loader.

ar Archive library builder.

dbx A symbolic debugger.

gdb The GNU symbolic debugger.

xxgdb The GNU debugger with a windown driven front-end.

ddd A motif based front-end to the gdb debugger.

3.2.17 Other interpreted languages

perl Practical extraction an report language.

tcl A perl-like language with special support for building user interfaces and com-

mand shells.

scheme A lisp-like extensible scripting language from GNU.

mercury A prolog-like language for arti�cial intelligence.

3.2.18 Processes and system statistics

ps List system process table.

vmstat List kernel virtual-memory statistics.

netstat List network connections and statistics.

rpcinfo Show rpc information.

showmount

Show clients mounting local �lesystems.

3.2.19 System identity

uname Display system name and operating system release.

hostname Show the name of this host.

domainname

Show the name of the local NIS domain. Normally this is chosen to be the same

as the BIND/DNS domain, but it need not be.

nslookup Interrogate the DNS/BIND name service (hostname to IP address conversion).

30 The unix programming environment

3.2.20 Internet resources

archie, xarchie

Search the internet ftp database for �les.

xrn, fnews

Read news (browser).

netscape, xmosaic

Read world wide web (WWW) (browser).

3.2.21 Text formatting and postscript

tex, latex

Donald Knuth's text formatting language, pronounced "tek" (the x is really a

greek "chi"). Used widely for technical publications. Compiles to dvi (device

independent) �le format.

texinfo A hypertext documentation system using tex and "info" format. This is the

GNU documentation system. This UNIX guide is written in texinfo!!!

xdvi View a tex dvi �le on screen.

dvips Convert dvi format into postscript.

ghostview, ghostscript

View a postscript �le on screen.

3.2.22 Picture editors and processors

xv Handles, edits and processes pictures in a variety of standard graphics formats

(gif, jpg, ti� etc). Use xv -quit to place a picture on your root window.

xpaint A simple paint program.

xfig A line drawing �gure editor. Produces postscript, tex, and a variety of other

output formats.

xsetroot Load an X-bitmap image into the screen (root window) background. Small

images are tiled.

3.2.23 Miscellaneous

date Print the date and time.

ispell Spelling checker.

xcalc A graphical calculator.

dc,bc Text-based calculators.

xclock A clock!

ping Send a "sonar" ping to see if another unix host is alive.

Chapter 3: The login environment 31

3.3 Terminals

In order to communicate with a user, a shell needs to have access to a terminal. Unix was

designed to work with many di�erent kinds of terminals. Input/output commands in Unix

read and write to a virtual terminal. In reality a terminal might be a text-based Teletype

terminal (called a tty for short) or a graphics based terminal; it might be 80-characters

wide or it might be wider or narrower. Unix take into account these possibility by de�ning

a number of instances of terminals in a more or less object oriented way.

Each user's terminal has to be con�gured before cursor based input/output will work

correctly. Normally this is done by choosing one of a number of standard terminal types a

list which is supplied by the system. In practice the user de�nes the value of the environment

variable `TERM' to an appropriate name. Typical examples are `vt100' and `xterm'. If no

standard setup is found, the terminal can always be con�gured manually using UNIX's most

cryptic and opaque of commands: `stty'.

The job of con�guring terminals is much easier now that hardware is more standard.

Users' terminals are usually con�gured centrally by the system administrator and it is

seldom indeed that one ever has to choose anything other than `vt100' or `xterm'.

3.4 The X window system

Because UNIX originated before windowing technology was available, the user-interface

was not designed with windowing in mind. The X window system attempts to be like a

virtual machine park, running a di�erent program in each window. Although the programs

appear on one screen, they may in fact be running on unix systems anywhere in the world,

with only the output being local to the user's display. The standard shell interface is

available by running an X client application called `xterm' which is a graphical front-end

to the standard UNIX textual interface.

The `xterm' program provides a virtual terminal using the X windows graphical user

interface. It works in exactly the same way as a tty terminal, except that standard graphical

facilities like copy and paste are available. Moreover, the user has the convenience of being

able to run a di�erent shell in every window. For example, using the `rlogin' command,

it is possible to work on the local system in one window, and on another remote system in

another window. The X-window environment allows one to cut and paste between windows,

regardless of which host the shell runs on.

3.4.1 The components of the X-window system

The X11 system is based on the client-server model. You might wonder why a window

system would be based on a model which was introduced for interprocess communication,

or network communication. The answer is straightforward.

The designers of the X window system realized that network communication was to be

the paradigm of the next generation of computer systems. They wanted to design a system

of windows which would enable a user to sit at a terminal in Massachusetts and work on a

machine in Tokyo { and still be able to get high quality windows displayed on their terminal.

The aim of X windows from the beginning is to create a distributed window environment.

When I log onto my friend's Hewlett Packard workstation to use the text editor (because

I don't like the one on my EUNUCHS workstation) I want it to work correctly on my screen,

32 The unix programming environment

with my keyboard { even though my workstation is manufactured by a di�erent company.

I also want the colours to be right despite the fact that the HP machine uses a completely

di�erent video hardware to my machine. When I press the curly brace key {, I want to see

a curly brace, and not some hieroglyphic because the HP station uses a di�erent keyboard.

These are the problems which X tries to address. In a network environment we need a

common window system which will work on any kind of hardware, and hide the di�erences

between di�erent machines as far as possible. But it has to be
exible enough to allow

us to change all of the things we don't like { to choose our own colours, and the kind

of window borders we want etc. Other windowing systems (like Microsoft windows) ignore

these problems and thereby lock the user to a single vendors products and a single operating

system. (That, of course, is no accident.)

The way X solves this problem is to use the client server model. Each program which

wants to open a window on somebody's compute screen is a client of the X window service.

To get something drawn on a user's screen, the client asks a server on the host of interest

to draw windows for it. No client ever draws anything itself { it asks the server to do it on

its behalf. There are several reasons for this:

� The clients can all talk a common `window language' or protocol. We can hide the

di�erence between di�erent kinds of hardware by making the machine-speci�c part

of drawing graphics entirely a problem of implementing the server on the particular

hardware. When a new type of hardware comes along, we just need to modify the

server { none of the clients need to be modi�ed.

� We can contact di�erent servers and send our output to di�erent hardware { thus even

though a program is running on a CPU in Tokyo, it can ask the server in Massachusetts

to display its window for it.

� When more than one window is on a user's display, it eventually becomes necessary to

move the windows around and then �gure out which windows are on top of which other

windows etc. If all of the drawing information is kept in a server, it is straightforward

to work out this information. If every client drew where it wanted to, it would be

impossible to know which window was supposed to be on top of another.

In X, the window manager is a di�erent program to the server which does the drawing

of graphics { but the client-server idea still applies, it just has one more piece to its puzzle.

3.4.2 How to set up X windows

The X windows system is large and complex and not particularly user friendly. When

you log in to the system, X reads two �les in your home directory which decide which

applications will be started what they will look like. The �les are called

.Xsession This �le is a shell script which starts up a number of applications as background

processes and exits by calling a window manager. Here is a simple example �le

#!/bin/csh

#

.xsession file

#

#

Chapter 3: The login environment 33

setenv PATH /usr/bin:/bin:/local/gnu/bin:/usr/X11R6/bin

#

List applications here, with & at the end

so they run in the background

#

xterm -T NewTitle -sl 1000 -geometry 90x45+16+150 -sb &

xclock &

xbiff -geometry 80x80+510+0 &

Start a window manager. Exec replaces this script with

the fvwm process, so that it doesn't exist as a separate

(useless) process.

exec /local/bin/fvwm

.Xdefaults This �le speci�es all of the resources which X programs use. It can be used

to change the colours used by applications, or font types etc. The subject of

X-rescources is a large one and we don't have time for it here. Here is a simple

example, which shows how you can make your over-bright xterm and emacs

windows less bright grey shade.

xterm*background: LightGrey

Emacs*background: grey92

Xemacs*background: grey92

3.4.3 X displays and authority

In the terminology used by X11, every client program has to contact a display in order to

open a window. A display is a virtual screen which is created by the X server on a particular

host. X can create several separate displays on a given host, though most machines only

have one.

When an X client program wants to open a window, it looks in the UNIX environment

variable `DISPLAY' for the IP address of a host which has an X server it can contact. For

example, if we wrote

setenv DISPLAY myhost:0

the client would try to contact the X server on `myhost' and ask for a window on display

number zero (the usual display). If we wrote

setenv DISPLAY 198.112.208.35:0

the client would try to open display zero on the X server at the host with the IP address

`198.112.208.35'.

Clearly there must be some kind of security mechanism to prevent just anybody from

opening windows on someone's display. X has two such mechanisms:

xhost This mechanism is now obsolete. The `xhost' command is used to de�ne a list

of hosts which are allowed to open windows on the user's display. It cannot

34 The unix programming environment

destinguish between individual users. i.e. the command xhost yourhost would

allow anyone using yourhost to access the local display. This mechanism is only

present for backward compatibility with early versions of X windows. Normally

one should use the command xhost - to exclude all others from accessing the

display.

Xauthority

The Xauthority mechanism has replaced the xhost scheme. It provides a secu-

rity mechanism which can distinguish individual users, not just hosts. In order

for a user to open a window on a display, he/she must have a ticket|called a

"magic cookie". This is a binary �le called `.Xauthority' which is created in

the user's home directory when he/she �rst starts the X-windows system. Any-

one who does not have a recent copy of this �le cannot open windows or read

the display of the user's terminal. This mechanism is based on the idea that the

user's home directory is available via NFS on all hosts he/she will log onto, and

thus the owner of the display will always have access to the magic cookie, and

will therefore always be able to open windows on the display. Other users must

obtain a copy of the �le in order to open windows there. The command xauth

is an interactive utility used for controlling the contents of the `.Xauthority'

�le. See the `xauth' manual page for more information.

3.5 Multiple screens

The window paradigm has been very successful in many ways, but anyone who has used

a window system knows that the screen is simply not big enough for all the windows one

would like! Unix has several solutions to this problem.

One solution is to attach several physical screens to a terminal. The X window system

can support any number of physical screens of di�erent types. A graphical designer might

want a high resolution colour screen for drawing and a black and white screen for writing

text, for instance. The disadvantage with this method is the cost of the hardware.

A cheaper solution is to use a window manager such as `fwvm' which creates a virtual

screen of unlimited size on a single monitor. As the mouse pointer reaches the edge of the

true screen, the window manager replaces the display with a new "blank screen" in which

to place windows. A miniaturized image of the windows on a control panel acts as a map

which makes it possible to �nd the applications on the virtual screen.

Yet another possibility is to create virtual displays inside a single window. In other

words, one can collapse several shell windows into a single `xterm' window by running the

program `screen'. The screen command allows you to start several shells in a single window

(using hCTRL-a CTRL-ci) and to switch between them (by typing hCTRL-a CTRL-ni). It is only

possible to see one shell window at a time, but it is still possible to cut and paste between

windows and one has a considerable saving of space. The `screen' command also allows

you to suspend a shell session, log out, log in again later and resume the session precisely

where you left o�.

Here is a summary of some useful screen commands:

screen Start the screen server.

screen -r Resume a previously suspended screen session if possible.

Chapter 3: The login environment 35

CTRL-a CTRL-c

Start a new shell on top of the others (a fresh `screen') in the current window.

CTRL-a CTRL-n

Switch to the next `screen'.

CTRL-a CTRL-a

Switch to the last screen used.

CTRL-a a When screen is running, CTRL-a is used for screen commands and cannot there-

fore be used in its usual shell meaning of `jump to start of line'. CTRL-a a

replaces this.

CTRL-a CTRL-d

Detach the screen session from the current window so that it can be resumed

later. It can be resumed with the `screen -r' command.

CTRL-a ? Help screen.

36 The unix programming environment

Chapter 4: Files and access 37

4 Files and access

To prevent all users from being able to access all �les on the system, unix records

information about who creates �les and also who is allowed to access them later.

Each user has a unique username or loginname together with a unique user id or uid.

The user id is a number, whereas the login name is a text string { otherwise the two express

the same information. A �le belongs to user A if it is owned by user A. User A then decides

whether or not other users can read, write or execute the �le by setting the protection bits

or the permission of the �le using the command chmod.

In addition to user identities, there are groups of users. The idea of a group is that

several named users might want to be able to read and work on a �le, without other users

being able to access it. Every user is a member of at least one group, called the login group

and each group has both a textual name and a number (group id). The uid and gid of each

user is recorded in the �le /etc/passwd (See chapter 6). Membership of other groups is

recorded in the �le /etc/group or on some systems /etc/logingroup.

4.1 Protection bits

The following output is from the command ls -lag executed on a SunOS type machine.

lrwxrwxrwx 1 root wheel 7 Jun 1 1993 bin -> usr/bin

-r--r--r-- 1 root bin 103512 Jun 1 1993 boot

drwxr-sr-x 2 bin staff 11264 May 11 17:00 dev

drwxr-sr-x 10 bin staff 2560 Jul 8 02:06 etc

drwxr-sr-x 8 root wheel 512 Jun 1 1993 export

drwx------ 2 root daemon 512 Sep 26 1993 home

-rwxr-xr-x 1 root wheel 249079 Jun 1 1993 kadb

lrwxrwxrwx 1 root wheel 7 Jun 1 1993 lib -> usr/lib

drwxr-xr-x 2 root wheel 8192 Jun 1 1993 lost+found

drwxr-sr-x 2 bin staff 512 Jul 23 1992 mnt

dr-xr-xr-x 1 root wheel 512 May 11 17:00 net

drwxr-sr-x 2 root wheel 512 Jun 1 1993 pcfs

drwxr-sr-x 2 bin staff 512 Jun 1 1993 sbin

lrwxrwxrwx 1 root wheel 13 Jun 1 1993 sys->kvm/sys

drwxrwxrwx 6 root wheel 732 Jul 8 19:23 tmp

drwxr-xr-x 27 root wheel 1024 Jun 14 1993 usr

drwxr-sr-x 10 bin staff 512 Jul 23 1992 var

-rwxr-xr-x 1 root daemon 2182656 Jun 4 1993 vmunix

The �rst column is a textual representation of the protection bits for each �le. Column

two is the number of hard links to the �le (See exercises below). The third and fourth

columns are the user name and group name and the remainder show the �le size in bytes

and the creation date. Notice that the directories /bin and /sys are symbolic links to other

directories.

There are sixteen protection bits for a UNIX �le, but only twelve of them can be changed

by users. These twelve are split into four groups of three. Each three-bit number corresponds

to one octal number.

38 The unix programming environment

The leading four invisible bits gives information about the type of �le: is the �le a plain

�le, a directory or a link. In the output from ls this is represented by a single character:

-, d or l.

The next three bits set the so-called s-bits and t-bit which are explained below.

The remaining three groups of three bits set
ags which indicate whether a �le can be

read `r', written to `w' or executed `x' by (i) the user who created them, (ii) the other users

who are in the group the �le is marked with, and (iii) any user at all.

For example, the permission

Type Owner Group Anyone

d rwx r-x ---

tells us that the �le is a directory, which can be read and written to by the owner, can be

read by others in its group, but not by anyone else.

Note about directories. It is impossible to cd to a directory unless the x bit is set. That

is, directories must be `executable' in order to be accessible.

Here are some examples of the relationship between binary, octal and the textual repre-

sentation of �le modes.

Binary Octal Text

001 1 x

010 2 w

100 4 r

110 6 rw-

101 5 r-x

- 644 rw-r--r--

It is well worth becoming familiar with the octal number representation of these permissions.

4.2 chmod

The chmod command changes the permission or mode of a �le. Only the owner of the

�le or the superuser can change the permission. Here are some examples of its use. Try

them.

make read/write-able for everyone

chmod a+w myfile

add the 'execute' flag for directory

chmod u+x mydir/

open all files for everyone

chmod 755 *

set the s-bit on my-dir's group

chmod g+s mydir/

descend recursively into directory opening all files

chmod -R a+r dir

Chapter 4: Files and access 39

4.3 Umask

When a new �le gets created, the operating system must decide what default protection

bits to set on that �le. The variable umask decides this. umask is normally set by each user

in his or her .cshrc �le (see next chapter). For example

umask 077 # safe

umask 022 # liberal

According the UNIX documentation, the value of umask is `XOR'ed (exclusive `OR') with a

value of 666 & umask for plain �les or 777 & umask for directories in order to �nd out the

standard protection. Actually this is not quite true: `umask' only removes bits, it never sets

bits which were not already set in 666. For instance

umask Permission

077 600 (plain)

077 700 (dir)

022 644 (plain)

022 755 (dir)

The correct rule for computing permissions is not XOR but `NOT AND'.

4.3.1 Making programs executable

A unix program is normally executed by typing its pathname. If the x execute bit is not

set on the �le, this will generate a `Permission denied' error. This protects the system from

interpreting nonsense �les as programs. To make a program executable for someone, you

must therefore ensure that they can execute the �le, using a command like

chmod u+x �lename

This command would set execute permissions for the owner of the �le;

chmod ug+x �lename

would set execute permissions for the owner and for any users in the same group as the �le.

Note that script programs must also be readable in order to be executable, since the shell

has the interpret them by reading.

4.3.2 chown and chgrp

These two commands change the ownership and the group ownership of a �le. Only

the superuser can change the ownership of a �le on most systems. This is to prevent users

from being able to defeat quota mechanisms. (On some systems, which do not implement

quotas, ordinary users can give a �le away to another user but not get it back again.) The

same applies to group ownership.

4.3.3 Making a group

Normally users other than root cannot de�ne their own groups. This is a weakness in

Unix from older times which no one seems to be in a hurry to change. At Oslo College,

Computer Science, we use a local solution whereby users can edit a �le to create their own

groups. This �le is called `/iu/nexus/local/iu/etc/iu-group'. The format of the group

�le is:

group-name::group-number:comma-separated-list-of-users

40 The unix programming environment

4.4 s-bit and t-bit (sticky bit)

The s and t bits have special uses. They are described as follows.

Octal Text Name

4000 chmod u+s Setuid bit

2000 chmod g+s Setgid bit

1000 chmod +t Sticky bit

The e�ect of these bits di�ers for plain �les and directories and di�er between di�erent

versions of UNIX. You should check the manual page man sticky to �nd out about your

system! The following is common behaviour.

For executable �les, the setuid bit tells UNIX that regardless of who runs the program it

should be executed with the permissions and rights of owner of the �le. This is often used

to allow normal users limited access to root privileges. A setuid-root program is executed

as root for any user. The setgid bit sets the group execution rights of the program in a

similar way.

In BSD unix, if the setgid bit is set on a directory then any new �les created in that

directory assume the group ownership of the parent directory and not the logingroup of the

user who created the �le. This is standard policy under system 5.

A directory for which the sticky bit is set restrict the deletion of �les within it. A �le or

directory inside a directory with the t-bit set can only be deleted or renamed by its owner

or the superuser. This is useful for directories like the mail spool area and /tmp which must

be writable to everyone, but should not allow a user to delete another user's �les.

(Ultrix) If an executable �le is marked with a sticky bit, it is held in the memory or

system swap area. It does not have to be fetched from disk each time it is executed. This

saves time for frequently used programs like ls.

(Solaris 1) If a non-executable �le is marked with the sticky bit, it will not be held in the

disk page cache { that is, it is never copied from the disk and held in RAM but is written

to directly. This is used to prevent certain �les from using up valuable memory.

On some systems (e.g. ULTRIX), only the superuser can set the sticky bit. On others

(e.g. SunOS) any user can create a sticky directory.

Chapter 5: C shell 41

5 C shell

The C shell is the command interpreter which you use to run programs and utilities.

It contains a simple programming language for writing tailor-made commands, and allows

you to join together unix commands with pipes. It is a con�gurable environment, and once

you know it well, it is the most e�cient way of working with unix.

5.1 .cshrc and .login �les

Most users run the C-shell `/bin/csh' as their login environment, or these days, prefer-

ably the `tcsh' which is an improved version of csh. When a user logs in to a UNIX

system the C-shell starts by reading some �les which con�gure the environment by de�ning

variables like path.

� The �le `.cshrc' is searched for in your home directory. i.e. `~/.cshrc'. If it is found,

its contents are interpreted by the C-shell as C-shell instructions, before giving you the

command prompt1.

� If and only if this is the login shell (not a sub-shell that you have started after login)

then the �le `~/.login' is searched for and executed.

With the advent of the X11 windowing system, this has changed slightly. Since the window

system takes over the entire login procedure, users never get to run `login shells', since the

login shell is used up by the X11 system. On an X-terminal or host running X the `.login'

�le normally has no e�ect.

With some thought, the `.login' �le can be eliminated entirely, and we can put every-

thing into the .cshrc �le. Here is a very simple example `.cshrc' �le.

#

.cshrc - read in by every csh that starts.

#

Set the default file creation mask

umask 077

Set the path

set path=(/usr/local/bin /usr/bin/X11 /usr/ucb /bin /usr/bin .)

Exit here if the shell is not interactive

if ($?prompt == 0) exit

Set some variables

set noclobber notify filec nobeep

set history=100

set prompt="`hostname`%"

1 Under HPUX, two other �les are also read by the C-shell. These are called `/etc/csh.login'

and `/etc/src.csh', enabling some standard set-up to be con�gured globally. GNU/Linux

has a similar system. On solaris systems `/etc/.login' is read.

42 The unix programming environment

set prompt2 = "%m %h>" # tcsh, prompt for foreach and while

setenv PRINTER myprinter

setenv LD_LIBRARY_PATH /usr/lib:/usr/local/lib:/usr/openwin/lib

Aliases are shortcuts to unix commands

alias passwd yppasswd

alias dir 'ls -lg \!* | more'

alias sys 'ps aux | more'

alias h history

It is possible to make a much more complicated .cshrc �le than this. The advent of

distributed computing and NFS (Network �le system) means that you might log into many

di�erent machines running di�erent versions of unix. The command path would have to be

set di�erently for each type of machine.

5.2 De�ning variables with set, setenv

We have already seen in the examples above how to de�ne variables in C-shell. Let's

formalize this. To de�ne a local variable { that is, one which will not get passed on to

programs and sub-shells running under the current shell, we write

set local = "some string"

set myname = "`whoami`"

These variables are then referred to by using the dollar `$' symbol. i.e. The value of the

variable `local' is `$local'.

echo $local $myname

Global variables, that is variables which all sub-shells inherit from the current shell are

de�ned using `setenv'

setenv GLOBAL "Some other string"

setenv MYNAME "`who am i`"

Their values are also referred to using the `$' symbol. Notice that set uses an `=' sign while

`setenv' does not.

Variables can be also created without a value. The shell uses this method to switch on

and o� certain features, using variables like `noclobber' and `noglob'. For instance

nexus% set flag

nexus% if ($?flag) echo 'Flag is set!'

Flag is set!

nexus% unset flag

nexus% if ($?flag) echo 'Flag is set!'

nexus%

The operator `$?variable' is `true' if variable exists and `false' if it does not. It does not

matter whether the variable holds any information.

The commands `unset' and `unsetenv' can be used to unde�ne or delete variables when

you don't want them anymore.

Chapter 5: C shell 43

5.3 Arrays

A useful facility in the C-shell is the ability to make arrays out of strings and other vari-

ables. The round parentheses `(..)' do this. For example, look at the following commands.

nexus% set array = (a b c d)

nexus% echo $array[1]

a

nexus% echo $array[2]

b

nexus% echo $array[$#array]

d

nexus% set noarray = ("a b c d")

nexus% echo $noarray[1]

a b c d

nexus% echo $noarray[$#noarray]

a b c d

The �rst command de�nes an array containing the elements `a b c d'. The elements of the

array are referred to using square brackets `[..]' and the �rst element is `$array[1]'. The

last element is `$array[4]'. NOTE: this is not the same as in C or C++ where the �rst

element of the array is the zeroth element!

The special operator `$#' returns the number of elements in an array. This gives us a

simple way of �nding the end of the array. For example

nexus% echo $#path

23

nexus% echo "The last element in path is $path[$#path]"

The last element in path is .

To �nd the next last element we need to be able to do arithmetic. We'll come back to this

later.

5.4 Pipes and redirection in csh

The symbols

< > >> << | &

have a special meaning in the shell. By default, most commands take their input from

the �le `stdin' (the keyboard) and write their output to the �le `stdout' and their error

messages to the �le `stderr' (normally, both of these output �les are de�ned to be the

current terminal device `/dev/tty', or `/dev/console').

`stdin', `stdout' and `stderr', known collectively as `stdio', can be rede�ned or redi-

rected so that information is taken from or sent to a di�erent �le. The output direction can

be changed with the symbol `>'. For example,

echo testing > myfile

produces a �le called `myfile' which contains the string `testing'. The single `>' (greater

than) sign always creates a new �le, whereas the double `>>' appends to the end of a �le, if

it already exists. So the �rst of the commands

44 The unix programming environment

echo blah blah >> myfile

echo Newfile > myfile

adds a second line to `myfile' after `testing', whereas the second command writes over

`myfile' and ends up with just one line `New�le'.

Now suppose we mistype a command

ehco test > myfile

The command `ehco' does not exist and so the error message `ehco: Command not found'

appears on the terminal. This error message was sent to stderr { so even though we

redirected output to a �le, the error message appeared on the screen to tell us that an

error occurred. Even this can be changed. `stderr' can also be redirected by adding an

ampersand `&' character to the `>' symbol. The command

ehco test >& myfile

results in the �le `myfile' being created, containing the error message `ehco: Command

not found'.

The input direction can be changed using the `<' symbol for example

/bin/mail mark < message

would send the �le `message' to the user `mark' by electronic mail. The mail program takes

its input from the �le instead of waiting for keyboard input.

There are some re�nements to the redirection symbols. First of all, let us introduce the

C-shell variable `noclobber'. If this variable is set with a command like

set noclobber

then �les will not be overwritten by the `>' command. If one tries to redirect output to an

existing �le, the following happens.

unix% set noclobber

unix% touch blah # create an empty file blah

unix% echo test > blah

blah: File exists.

If you are nervous about overwriting �les, then you can set `noclobber' in your `.cshrc'

�le. `noclobber' can be overridden using the pling `!' symbol. So

unix% set noclobber

unix% touch blah # create an empty file blah

unix% echo test >! blah

writes over the �le `blah' even though `noclobber' is set.

Here are some other combinations of redirection symbols

`>>' Append, including `stderr'

`>>!' Append, ignoring `noclobber'

`>>&!' Append `stdout', `stderr', ignore `noclobber'

`<<' See below.

The last of these commands reads from the standard input until it �nds a line which contains

a word. It then feeds all of this input into the program concerned. For example,

Chapter 5: C shell 45

nexus% mail mark <<quit

nexus 1> Hello mark

nexus 2> Nothing much to say...

nexus 2> so bye

nexus 2>

nexus 2> quit

Sending mail...

Mail sent!

The mail message contains all the lines up to, but not including `marker'. This method

can also be used to print text verbatim from a �le without using multiple echo commands.

Inside a script one may write:

cat << "marker";

MENU

1) choice 1

2) choice 2

...

marker

The cat command writes directly to stdout and the input is redirected and taken

directly from the script �le.

A very useful construction is the `pipe' facility. Using the `|' symbol one can feed the

`stdout' of one program straight into the `stdin' of another program. Similarly with `|&'

both `stdout' and `stderr' can be piped into the input of another program. This is very

convenient. For instance, look up the following commands in the manual and try them.

ps aux | more

echo 'Keep on sharpenin them there knives!' | mail henry

vmstat 1 | head

ls -l /etc | tail

Note that when piping both standard input and standard error to another program, the

two �les do not mix synchronously. Often `stderr' appears �rst.

5.5 `tee' and `script'

Occasionally you might want to have a copy of what you see on your terminal sent to a

�le. `tee' and `script' do this. For instance,

find / -type l -print | tee myfile

sends a copy of the output of `find' to the �le `my�le'. `tee' can split the output into as

many �les as you want:

command | tee �le1 �le2

You can also choose to record the output an entire shell session using the `script' command.

nexus% script mysession

Script started, file is mysession

nexus% echo Big brother is scripting you

46 The unix programming environment

Big brother is scripting you

nexus% exit

exit

Script done, file is mysession

The �le `mysession' is a text �le which contains a transcript of the session.

5.6 Command history

The history feature in C-shell means that you do not have to type commands over and

over again. In the `tcsh' version of the C shell, and the `bash' version of the Bourne shell,

you can use the hUP ARROWi key to browse back through the list of commands you have

typed previously.

In the normal C-shell (`csh') there are three main commands.

`!!' Execute the last command again.

`!-3' Execute the third last command again.

`!4' Execute command number 4.

The �rst of these simply repeats the last command. The second counts backwards from

the last command to three commands-ago. The �nal command gives an absolute number.

The absolute command number can be seen by typing `history'.

5.7 Command/�lename completion

In the `tcsh' extension of the C-shell, you can save hours worth of typing errors by using

the completion mechanism. This feature is based on the hTABi key.

The idea is that if you type half a �lename and press hTABi, the shell will try to guess

the remainder of the �lename. It does this by looking at the �les which match what you

have already typed and trying to �ll in the rest. If there are several �les which match, the

shell sounds the "bell" or beeps. You can then type hCTRL-Di to obtain a list of the possible

alternatives. Here is an example: suppose you have just a single �le in the current directory

called `very_long_filename', typing

more hTABi

results in the following appearing on the command line

more very_long_filename

The shell was able to identify a unique �le. Now suppose that you have two �les called

`very_long_filename' and `very_big_filename', typing

more hTABi

results in the following appearing on the command line

more very_

and the shell beeps, indicating that the choice was not unique and a decision is required.

Next, you type hCTRL-Di to see which �les you ahve to choose from and the shell lists

them and returns you to the command line, exactly where you were. You now choose

`very_long_filename' by typing `l'. This is enough to uniquely identify the �le. Pressing

the hTABi key again results in

Chapter 5: C shell 47

more very_long_filename

on the screen. As long as you have written enough to select a �le uniquely, the shell will be

able to complete the name for you.

Completion also works on shell commands, but it is a little slower since the shell must

serach through all the directories in the command path to complete commands.

5.8 Single and double quotes

Two kinds of quotes can be used in shell apart from the backward quotes we mentioned

above. The essential di�erence between them is that certain shell commands work inside

double quotes but not inside single quotes. For example

nexus% echo /etc/rc.*

/etc/rc.boot /etc/rc.ip /etc/rc.local

nexus% echo "/etc/rc.*"

/etc/rc.*

nexus% echo "`who am i` -- my name is $user ???"

nexus!mark ttyp7 Jul 13 10:16 -- my name is mark ???

nexus% echo '`who am i` -- my name is $user ???'

`who am i` -- my name is $user ???

We see that the single quotes prevent variable substitution and sub-shells. Wildcards do

not work inside either single or double quotes.

5.9 Job control, break key, `fg', `bg'

So far we haven't mentioned UNIX's ability to multitask. In the Bourne shell (`sh') there

are no facilities for controlling several user processes2. C-shell provides some commands for

starting and stopping processes. These originate from the days before windows and X11,

so some of them may seem a little old-fashioned. They are still very useful nonetheless.

Let's begin by looking at the commands which are true for any shell. Most programs

are run in the foreground or interactively. That means that they are connected to the

standard input and send their output to the standard output. A program can be made to

run in the background, if it does not need to use the standard I/O. For example, a program

which generates output and sends it to a �le could run in the background. In a window

environment, programs which create their own windows can also be started as background

processes, leaving standard I/O in the shell free.

Background processes run independently of what you are doing in the foreground.

2 Newer versions of the Bourne shell, like the Korn shell and Bourne-again-shell do have

these facilities.

48 The unix programming environment

5.9.1 Unix Processes and BSD signals

A background process is started using the special charcter `&' at the end of the command

line.

find / -name '*lib*' -print >& output &

The �nal `&' on the end of this line means that the job will be run in the background.

Note that this is not confused with the redirection operator `>&' since it must be the last

character on the line. The command above looks for any �les in the system containing the

string `lib' and writes the list of �les to a �le called `output'. This might be a useful way

of searching for missing libraries which you want to include in your environment variable

`LD_LIBRARY_PATH'. Searching the enire disk from the root directory `/' could take a long

time, so it pays to run this in the background.

If we want to see what processes are running, we can use the `ps' command. `ps' without

any arguments lists all of your processes, i.e. all processes owned by the user name you

logged in with. `ps' takes many options, for instance `ps auxg' will list all processes in

gruesome detail. (The "g" is for group, not gruesome!) `ps' reads the kernel's process

tables directly.

Processes can be stopped and started, or killed one and for all. The `kill' command

does this. There are, in fact, two versions of the `kill' command. One of them is built into

the C-shell and the other is not. If you use the C-shell then you will never care about the

di�erence. We shall nonetheless mention the special features of the C-shell built-ins below.

The kill command takes a number called a signal as an argument and another number

called the process identi�er or PID for short. Kill send signals to processes. Some of these

are fatal and some are for information only. The two commands

kill -15 127

kill 127

are identical. They both send signal 15 to PID 127. This is the normal termination signal

and it is often enough to stop any process from running.

Programs can choose to ignore certain signals by trapping signals with a special handler.

One signal they cannot ignore is signal 9.

kill -9 127

is a sure way of killing PID 127. Even though the process dies, it may not be removed from

the kernel's process table if it has a parent (see next section).

Here is the complete list of unix signals which the kernel send to processes in di�erent

circumstances.

1 "SIGHUP", /* hangup */

2 "SIGINT", /* interrupt */

3 "SIGQUIT", /* quit */

4 "SIGILL", /* illegal instruction (not reset when caught) */

5 "SIGTRAP", /* trace trap (not reset when caught) */

6 "SIGIOT/SIGABRT", /* IOT instruction */

7 "SIGEMT", /* EMT instruction */

8 "SIGFPE", /* floating point exception */

9 "SIGKILL", /* kill (cannot be caught or ignored) */

Chapter 5: C shell 49

10 "SIGBUS", /* bus error */

11 "SIGSEGV", /* segmentation violation */

12 "SIGSYS", /* bad argument to system call */

13 "SIGPIPE", /* write on a pipe with no one to read it */

14 "SIGALRM", /* alarm clock */

15 "SIGTERM", /* software termination signal from kill */

16 "SIGURG", /* urgent condition on IO channel */

17 "SIGSTOP", /* sendable stop signal not from tty */

18 "SIGTSTP", /* stop signal from tty */

19 "SIGCONT", /* continue a stopped process */

20 "SIGCHLD/SIGCLD", /* to parent on child stop or exit */

21 "SIGTTIN", /* to readers pgrp upon background tty read */

22 "SIGTTOU", /* like TTIN for output if (tp->t_local<OSTOP) */

23 "SIGIO/SIGPOLL", /* input/output possible signal */

24 "SIGXCPU", /* exceeded CPU time limit */

25 "SIGXFSZ", /* exceeded file size limit */

26 "SIGVTALRM", /* virtual time alarm */

27 "SIGPROF", /* profiling time alarm */

28 "SIGWINCH", /* window changed */

29 "SIGLOST", /* resource lost (eg, record-lock lost) */

30 "SIGUSR1", /* user defined signal 1 */

31 "SIGUSR2"

We have already mentioned 15 and 9 which are the main signals for users. Signal 1, or

`HUP' can be sent to certain programs by the superuser. For instance

kill -1 <inetd>

kill -HUP <inetd>

which forces `inetd' to reread its con�guration �le. Sometimes it is useful to suspend a

process temporarily and then restart it later.

kill -18 <PID> # suspend process <PID>

kill -19 <PID> # resume process <PID>

5.9.2 Child Processes and zombies

When you start a process from a shell, regardless of whether it is a background process or

a foreground process, the new process becomes a child of the original shell. Remember that

the shell is just a unix process itself. Moreover, if one of the children starts a new process

then it will be a child of the child (a grandchild?)! Processes therefore form hierachies.

Several children can have a common parent.

If we kill a parent, then (unless the child has detached itself from the parent) all of its

children die too. If a child dies, the parent is not a�ected. Sometimes when a child is killed,

it does not die but becomes "defunct" or a zombie process. This means that the child has

a parent which is waiting for it to �nish. If the parent has not yet been informed that

the child has died, for example because it has been suspended itself, then the dead child is

not removed from the kernel's process table. When the parent wakes up and receives the

message that the child has terminated, the process entry for the dead child can be removed.

50 The unix programming environment

5.9.3 C-shell builtins: `jobs', `kill', `fg',`bg', break key

Now let's look at some commands which are built into the C-shell for starting and

stopping processes. C-shell refers to user programs as `jobs' rather than processes { but

there is no real di�erence. The added bonus of the C-shell is that each shell has a job number

in addition to its PID. The job numbers are simpler and are private for the shell, whereas

the PIDs are assigned by the kernel and are often very large numbers which are di�cult to

to remember. When a command is executed in the shell, it is assigned a job number. If you

never run any background jobs then there is only ever one job number: 1, since every job

exits before the next one starts. However, if you run background tasks, then you can have

several jobs "active" at any time. Moreover, by suspending jobs, C-shell allows you to have

several interactive programs running on the same terminal { the `fg' and `bg' commands

allow you to move commands from the background to the foreground and vice-versa.

Take a look at the following shell session.

nexus% emacs myfile &

[1] 4990

nexus%

(other commands ... , edit myfile and close emacs)

[1] Exit 70 emacs myfile

When a background job is done, the shell prints a message at a suitable moment between

prompts.

[1] Done emacs myfile

This tells you that job number 1 �nished normally. If the job exits abnormally then the

word `Done' may be replaced by some other message. For instance, if you kill the job, it

will say

unix% kill %12

[12] Terminated textedit file

You can list the jobs you have running using the `jobs' command. The output looks

something like

[1] + Running textedit c.tex

[3] Running textedit glossary.tex

[4] Running textedit net.tex

[5] Running textedit overview.tex

[6] Running textedit perl.tex

[7] Running textedit shell.tex

[8] Running textedit sysadm.tex

[9] Running textedit unix.tex

[10] Running textedit x11.tex

[11] - Running shelltool

[15] Suspended emacs myfile

Chapter 5: C shell 51

To suspend a program which you are running in the foreground you can type hCTRL-zi

(this is like sending a `kill -18' signal from the keyboard).3 You can suspend any number

of programs and then restart them one at a time using `fg' and `bg'. If you want job 5 to

be restarted in the foreground, you would type

fg %5

When you have had enough of job 5, you can type CTRL-z to suspend it and then type

fg %6

to activate job 6. Provided a job does not want to send output to `stdout', you can restart

any job in the background, using a command like.

bg %4

This method of working was useful before windows were available. Using `fg' and `bg',

you can edit several �les or work on several programs without have to quit to move from

one to another.

See also some related commands for batch processing `at', `batch' and `atq', `cron'.

NOTE: hCTRL-ci sends a `kill -2' signal, which send a standard interrupt message to a

program. This is always a safe way to interrupt a shell command.

5.10 Scripts with arguments

One of the useful features of the shell is that you can use the normal unix commands

to make programs called scripts. To make a script, you just create a �le containing shell

commands you want to execute and make sure that the �rst line of the �le looks like the

following example.

#!/bin/csh -f

#

A simple script: check for user's mail

#

#

set path = (/bin /usr/ucb) # Set the local path

cd /var/spool/mail # Change dir

foreach uid (*)

echo "$uid has mail in the intray! " # space prevents an error!

end

The sequence `#!/bin/csh' means that the following commands are to be fed into

`/bin/csh'. The two symbols `#!' must be the very �rst two characters in the �le. The

`-f' option means that your `.cshrc' �le is not read by the shell when it starts up. The �le

containing this script must be executable (see `chmod') and must be in the current path,

like all other programs.

3 This does not seem to work in solaris?!

52 The unix programming environment

Like C programs, C-shell scripts can accept command line arguments. Suppose you want

to make a program to say hello to some other users who are logged onto the system.

say-hello mark sarah mel

To do this you need to know the names that were typed on the command line. These names

are copied into an array in the C-shell called the argument vector, or `argv'. To read these

arguments, you just treat `argv' as an array.

#!/bin/csh -f

#

Say hello

#

foreach name ($argv)

echo Saying hello to $name

echo "Hello from $user! " | write $name

end

The elements of the array can be referred to as `argv[1]'..`argv[$#argv]' as usual.

They can also be referred to as `$1'..`$3' upto the last acceptable number. This makes

C-shell compatible with the Bourne shell as far as arguments are concerned. One extra

ourish in this method is that you can also refer to the name of the program itself as `$0'.

For example,

#!/bin/csh -f

echo This is program $0 running for $user

`$argv' represents all the arguments. You can also use `$*' from the Bourne shell.

5.11 Sub-shells ()

The C-shell does not allow you to de�ne subroutines or functions, but you can create a

local shell, with its own private variables by enclosing commands in parentheses.

#!/bin/csh

cd /etc

(cd /usr/bin; ls *) > myfile

pwd

This program changes the working directory to /etc and then executes a subshell which

inside the brackets changes directory to /usr/bin and lists the �les there. The output of this

private shell are sent to a �le `my�le'. At the end we print out the current working directory

just to show that the `cd' command in brackets had no e�ect on the main program.

Normally both parentheses must be on the same line. If a subshell command line gets

too long, so that the brackets are not on the same line, you have to use backslash characters

to continue the lines,

Chapter 5: C shell 53

(command \

command \

command \

)

5.12 Tests and conditions

No programming language would be complete without tests and loops. C-shell has two

kinds of decision structure: the `if..then..else' and the `switch' structure. These are

closely related to their C counterparts. The syntax of these is

if (condition) command

if (condition) then

command

command..

else

command

command..

endif

switch (string)

case one:

commands

breaksw

case two:

commands

breaksw

...

endsw

In the latter case, no commands should appear on the same line as a `case' statement,

or they will be ignored. Also, if the `breaksw' commands are omitted, then control
ows

through all the commands for case 2, case 3 etc, exactly as it does in the C programming

language.

We shall consider some examples of these statements in a moment, but �rst it is worth

listing some important tests which can be used in `if' questions to �nd out information

about �les.

`-r �le' True if the �le exists and is readable

`-w �le' True if the �le exists and is writable

`-x �le' True if the �le exists and is executable

54 The unix programming environment

`-e �le' True if the �le simply exists

`-z �le' True if the �le exists and is empty

`-f �le' True if the �le is a plain �le

`-d �le' True if the �le is a directory

We shall also have need of the following comparision operators.

`==' is equal to (string comparison)

`!=' is not equal to

`>' is greater than

`<' is less than

`>=' is greater than or equal to

`<=' is less than or equal to

`=~' matches a wildcard

`!~' does not match a wildcard

The simplest way to learn about these statements is to use them, so we shall now look

at some examples.

#!/bin/csh -f

#

Safe copy from <arg[1]> to <arg[2]>

#

#

if ($#argv != 2) then

echo "Syntax: copy <from-file> <to-file>"

exit 0

endif

if (-f $argv[2]) then

echo "File exists. Copy anyway?"

switch ($<) # Get a line from user

case y:

breaksw

default:

echo "Doing nothing!"

exit 0

endsw

Chapter 5: C shell 55

endif

echo -n "Copying $argv[1] to $argv[2]..."

cp $argv[1] $argv[2]

echo done

endif

This script tries to copy a �le from one location to another. If the user does not type

exactly two arguments, the script quits with a message about the correct syntax. Otherwise

it tests to see whether a plain �le has the same name as the �le the user wanted to copy to.

If such a �le exists, it asks the user if he/she wants to continue before proceding to copy.

5.12.1 Switch example: con�gure script

Here is another example which compiles a software package. This is a problem we shall

return to later See Section 9.5 [Make], page 119. The problem this script tries to address

is the following. There are many di�erent versions of UNIX and they are not exactly

compatible with one another. The program this �le compiles has to work on any kind of

UNIX, so it tries �rst to determine what kind of UNIX system the script is being run on

by calling `uname'. Then it de�nes a variable `MAKE' which contains the path to the `make'

program which will build software. The make program reads a �le called `Make�le' which

contains instructions for compiling the program, but this �le needs to know the type of

UNIX, so the script �rst copies a �le `Make�le.src' using `sed' replace a dummy string with

the real name of the UNIX. Then it calls make and sets the correct permission on the �le

using `chmod'.

#!/bin/csh -f

###

#

#

CONFIGURE Makefile AND BUILD software

#

#

###

set NAME = (`uname -r -s`)

switch ($NAME[1])

case SunOS*:

switch ($NAME[2])

case 4*:

setenv TYPE SUN4

setenv MAKE /bin/make

breaksw

case 5*:

setenv TYPE SOLARIS

56 The unix programming environment

setenv MAKE /usr/ccs/bin/make

breaksw

endsw

breaksw

case ULTRIX*:

setenv TYPE ULTRIX

setenv MAKE /bin/make

breaksw

case HP-UX*:

setenv TYPE HPuUX

setenv MAKE /bin/make

breaksw

case AIX*:

setenv TYPE AIX

setenv MAKE /bin/make

breaksw

case OSF*:

setenv TYPE OSF

setenv MAKE /bin/make

breaksw

case IRIX*:

setenv TYPE IRIX

setenv MAKE /bin/make

breaksw

default:

echo Unknown architecture $NAME[1]

endsw

Generate Makefile from source file

sed s/HOSTTYPE/$TYPE/ Makefile.src > Makefile

echo "Making software. Type CTRL-C to abort and edit Makefile"

$MAKE software # call make to build program

chmod 755 software # set correct protection

5.13 Loops in csh

The C-shell has three loop structures: `repeat', `while' and `foreach'. We have already

seen some examples of the `foreach' loop.

The structure of these loops is as follows

repeat number-of-times command

Chapter 5: C shell 57

while (test expression)

commands

end

foreach control-variable (list-or-array)

commands

end

The commands `break' and `continue' can be used to break out of the loops at any time.

Here are some examples.

repeat 2 echo "Yo!" | write mark

This sends the message "Yo!" to mark's terminal twice.

repeat 5 echo `echo "Shutdown time! Log out now" | wall ; sleep 30` ; halt

This example repeats the command `echo Shutdown time...' �ve times at 30 second intervals,

before shutting down the system. Only the superuser can run this command! Note the

strange construction with `echo echo'. This is to force the repeat command to take two

shell commands as an argument. (Try to explain why this works for yourself.)

5.14 Input from the user

Test a user response

echo "Answer y/n (yes or no)"

set valid = false

while ($valid == false)

switch ($<)

case y:

echo "You answered yes"

set valid = true

breaksw

case n:

echo "You answered no"

set valid = true

breaksw

58 The unix programming environment

default:

echo "Invalid reponse, try again"

breaksw

endsw

end

Notice that it would have been simpler to replace the two lines

set valid = true

breaksw

by a single line `break'. `breaksw' jumps out of the switch construction, after which the

`while' test fails. `break' jumps out of the entire while loop.

5.15 Extracting parts of a pathname

A path name consists of a number of di�erent parts:

� The path to the directory where a �le is held.

� The name of the �le itself.

� The �le extension (after a dot).

By using one of the following modi�ers, we can extract these di�erent elements.

`:h' The path to the �le

`:t' The �lename itself

`:e' The �le extension

`:r' The complete �le-path minus the �le extension

Here are some examples and the results:

set f = ~/progs/c++/test.C

echo $f:h

/home/mark/progs/c++

echo $f:t

test.C

echo $f:e

C

echo $f:r

/home/mark/progs/c++/test

Chapter 5: C shell 59

5.16 Arithmetic

Before using these features in a real script, we need one more possibility: numerical

addition, subtraction and multiplication etc.

To tell the C-shell that you want to perform an operation on numbers rather than strings,

you use the `@' symbol followed by a space. Then the following operations are possible.

@ var = 45 # Assign a numerical value to var

echo $var # Print the value

@ var = $var + 34 # Add 34 to var

@ var += 34 # Add 34 to var

@ var -= 1 # subtract 1 from var

@ var *= 5 # Multiply var by 5

@ var /= 3 # Divide var by 3 (integer division)

@ var %= 3 # Remainder after dividing var by 3

@ var++ # Increment var by 1

@ var-- # Decrement var by 1

@ array[1] = 5 # Numerical array

@ logic = ($x > 6 && $x < 10) # AND

@ logic = ($x > 6 || $x < 10) # OR

@ false = ! $var # Logical NOT

@ bits = ($x | $y) # Bitwise OR

@ bits = ($x ^ $y) # Bitwise XOR

@ bits = ($x & $y) # Bitwise AND

@ shifted = ($var >> 2) # Bitwise shift right

@ back = ($var << 2) # Bitwise shift left

These operators are precisely those found in the C programming language.

5.17 Examples

The following script uses the operators in the last two sections to take a list of �les with

a given �le extension (say `.doc') and change it for another (say `.tex'). This is a partial

solution to the limitation of not being able to do multiple renames in shell.

#!/bin/csh -f

###

#

Change file extension for multiple files

#

###

if ($#argv < 2) then

60 The unix programming environment

echo Syntax: chext oldpattern newextension

echo "e.g: chext *.doc tex "

exit 0

endif

mkdir /tmp/chext.$user # Make a scratch area

set newext="$argv[$#argv]" # Last arg is new ext

set oldext="$argv[1]:e"

echo "Old extenstion was ($oldext)""

echo "New extension ($newext) -- okay? (y/n)"

switch($<)

case y:

breaksw

default:

echo "Nothing done."

exit 0

endsw

##

Remove the last file extension from files

##

i = 0

foreach file ($argv)

i++

if ($i == $#argv) break

cp $file /tmp/chext.$user/$file:r # temporary store

end

###

Add .newext file extension to files

###

set array = (`ls /tmp/chext.$user`)

foreach file ($array)

if (-f $file.$newext) then

echo destination file $file.$newext exists. No action taken.

continue

endif

Chapter 5: C shell 61

cp /tmp/chext.$user/$file $file.$newext

rm $file.$oldext

end

rm -r /tmp/chext.$user

Here is another example to try to decipher. Use the manual pages to �nd out about

`awk'. This script can be written much more easily in Perl or C, as we shall see in the next

chapters. It is also trivially implemented as a script in the system administration language

cfengine.

#!/bin/csh -f

###

#

KILL all processes owned by $argv[1] with PID > $argv[2]

#

###

if ("`whoami`" != "root") then

echo Permission denied

exit 0

endif

if ($#argv < 1 || $#argv > 2) then

echo Usage: KILL username lowest-pid

exit 0

endif

if ($argv[1] == "root") then

echo No! Too dangerous -- system will crash

exit 0

endif

##

Kill everything

##

if ($#argv == 1) then

set killarray = (`ps aux | awk '{ if ($1 == user) \

{printf "%s ",$2}}' user=$argv[1]`)

foreach process ($killarray)

kill -1 $process

kill -15 $process > /dev/null

62 The unix programming environment

kill -9 $process > /dev/null

if ("`kill -9 $process | egrep -e 'No such process'`" == "") then

echo "Warning - $process would not die - try again"

endif

end

###

Start from a certain PID

###

else if ($#argv == 2) then

set killarray = (`ps aux | awk '{ if ($1 == user && $2 > uid) \

{printf "%s ",$2}}' user=$argv[1] uid=$argv[2]`)

foreach process ($killarray)

kill -1 $process > /dev/null

kill -15 $process

sleep 2

kill -9 $process > /dev/null

if ("`kill -9 $process | egrep -e 'No such process'`" == "") then

echo "Warning - $process would not die - try again"

endif

end

endif

This program would be better written in C or Perl.

Chapter 6: Bourne shell 63

6 Bourne shell

Programmers who are used to C or C++ often �nd it easier to program in C-shell because

there are strong similarities between the two. The Bourne shell is somewhat di�erent in

style, but is structured in a way which makes it better suited to more complicated script

writing, especially for system administrators. Also it is closer to the kernels own exec

mechanism. The Bourne shell allows subroutines and default values for parameters. Most

of the system scripts in UNIX are written in the Bourne shell.

The principles of the Bourne shell are largely the same as those for the C-shell, so we

shall skip fairly quickly through the details. Historically, the Bourne shell came before the

C shell.

6.1 .pro�le

The `.profile' �le is the Bourne shell's answer to `.cshrc'. This �le is read by interac-

tive `/bin/sh' shells on starting up. On Sun systems the �le `/etc/profile' is also read.

On `HPUX' machines, the �le `/etc/src.sh' is read.

6.2 Variables and export

Local and global variables are both de�ned using the syntax

VARIABLE="Some string"

VAR=13

It is important that there be no space between the variable and the equals sign. By default

these variables are local. To make them global (so that child processes will inherit them)

we use the command

export VARIABLE

This adds the variable to the process environment. It is the analogue of making `environment

variables' with setenv in C shell. The command

set -a

changes the default so that all variables, after the command are created global.

Arrays or lists are often simulated in shell by sandwiching the colon `:' symbol between

items

PATH=/bin:/usr/bin:/etc:/local/bin:.

LD_LIBARAY_PATH=/usr/lib:/usr/openwin/lib:/local/lib

but there is no real facility for arrays in the Bourne shell. Note that the UNIX `cut'

command can be used to extract the elements of the list. Loops can also read such lists

directly See Section 6.9 [Loops in sh], page 69. A Perl script can also be used.

The value of a variable is given by the dollar symbol as in C-shell. It is also possible to

use curly braces around the variable name to `protect' the variable from interfering text.

For example:

$ animal=worm

$ echo book$animal

64 The unix programming environment

bookworm

$ thing=book

$ echo $thingworm

(nothing..)

$ echo ${thing}worm

bookworm

Default values can be given to variables in the Bourne shell. The following commands

illustrate this.

echo ${var-"No value set"}

echo ${var="Octopus"}

echo ${var+"Forced value"}

echo ${var?"No such variable"}

The �rst of these prints out the contents of `$var', if it is de�ned. If it is not de�ned the

variable is substituted for the string "No value set". The value of `var' is not changed by

this operation. It is only for convenience.

The second command has the same e�ect as the �rst, but here the value of `$var' is

actually changed to "Octopus" if `$var' is not set.

The third version is slightly peculiar. If `$var' is already set, its value will be forced to

be "Forced value", otherwise it is left unde�ned.

Finally the last instance issues an error message "No such variable" if `$var' is not

de�ned.

6.3 Stdin, stdout and stderr

In the Bourne shell, the standard input/output �les are referred to by numbers rather

than by names.

stdin File number 0

stdout File number 1

stderr File number 2

The default routes for these �les can be changed by redirection. The redirection commands

are more complicated than in C-shell, but they are also more
exible. Here is a comparison.

sh csh Description

command > file command > file Stdout to file

command 1> file command > file Stdout to file

command 2> errs (No analogue) Stderr only to file errs

command 1> file 2>&1 command >& file stdout and stderr to file

command 1> file 2> errs (No analogue) stdout to file, stderr to errs

Chapter 6: Bourne shell 65

6.4 Arithmetic in sh

Arithmetic is performed entirely `by proxy'. There are no internal arithmetic operators

as in the C-shell. To evaluate an expression we call the `expr' command or the `bc' precision

calculator. Here are some examples of `expr'

a=`expr $a+1` # increment a

a=`expr 4 + 10 * 5` # 4+10*5

check = `expr $a \> $b` # true=1, false=0. True if $a > $b

`expr' is very sensitive to spaces and backslash characters.

6.5 Scripts and arguments

Scripts are created by making an executable �le which begins with the sequence of

characters

#!/bin/sh

Although we didn't discuss it before, this construction is quite general: any executable �le

which begins with a sequence

#!myprogram -option

will cause the shell to attempt to execute

myprogam -option filename

where �lename is the name of the �le.

If a script is to accept arguments then these can be referred to as ` $1 $2 $3..$9'. There

is a logical limit of nine arguments to a script, but in practice it is possibile to get around

this limitation. `$0' is the name of the script itself.

Here is a simple script in the Bourne shell which prints out all its arguments.

#!/bin/sh

#

Print all arguments (version 1)

#

for arg in $*

do

echo Argument $arg

done

echo Total number of arguments was $#

The `$*' symbol stands for the entire list of arguments (like `$argv' in C-shell) and `$#' is

the total number of arguments (like `$#argv' in C-shell).

Another way of achieving the same is to use the `shift' command. We shall meet

this again in the Perl programming language. `shift' takes the �rst argument from the

argument list and deletes it, moving all of the other arguments down one number { this is

how we can handle long lists of arguments in `sh'.

66 The unix programming environment

#!/bin/sh

#

Print all arguments (version 2)

#

while (true)

do

arg=$1;

shift;

echo $arg was an argument;

if [$# -eq 0]; then

break

fi

done

6.6 Return codes

All programs which execute in UNIX return a value through the C `return' command.

There is a convention that a return value of zero (0) means that everything went well,

whereas any other value implies that some error occurred. The return value is usually the

value returned in `errno', the extenal error variable in C.

Shell scripts can test for these values either by placing the command directly inside an

`if' test, or by testing the variable `$?' which is always set to the return code of the last

command. Some examples are given following the next two sections.

6.7 Tests and conditionals

The Bourne shell has the usual array of tests. They are written as follows. Notice that

`test' is itself not a part of the shell, but is a program which works out conditions and

provides a return code. See the manual page on `test' for more details.

test -f �le

True if the �le is a plain �le

test -d �le

True if the �le is a directory

test -r �le

True if the �le is readable

test -w �le

True if the �le is writable

test -x �le

True if the �le is executable

test -s �le

True if the �le contains something

test -g �le

True if setgid bit is set

Chapter 6: Bourne shell 67

test -u �le

True if setuid bit is set

test s1 = s2

True if strings s1 and s2 are equal

test s1 != s2

True if strings s1 and s2 are unequal

test x -eq y

True if the integers x and y are numerically equal

test x -ne y

True if integers are not equal

test x -gt y

True if x is greater than y

test x -lt y

True if x is less than y

test x -ge y

True if x>=y

test x -le y

True if x <= y

! Logical NOT operator

-a Logical AND

-o Logical OR

Note that an alternate syntax for writing these commands if to use the square brackets,

instead of writing the word test.

[$x -lt $y] "==" test $x -lt $y

The conditional structures have the following syntax.

if unix-command

then

command

else

commands

fi

The `else' clause is, of course, optional. As noted before, the �rst unix command could be

anything, since every command has a return code. The result is TRUE if it evaluates to

zero and false otherwise (in contrast to the conventions in most languages). Multiple tests

can be made using

if unix-command

then

commands

elif unix-command

then

commands

68 The unix programming environment

elif unix-command

then

commands

else

commands

fi

where `elif' means `else-if'.

The equivalent of the C-school's `switch' statement is a more Pascal-like `case' struc-

ture.

case unix-command-or-variable in

wildcard1) commands ;;

wildcard2) commands ;;

wildcard3) commands ;;

esac

This structure uses the wildcards to match the output of the command or variable in the

�rst line. The �rst pattern which matches gets executed.

6.8 Input from the user in sh

In shell you can read the value of a variable using the `read' command, with syntax

read variable

This reads in a string from the keyboard and terminates on a newline character. Another

way to do this is to use the `input' command to access a particular logical device. The

keyboard device in the current terminal is `/dev/tty', so that one writes

variable = `line < /dev/tty`

which fetches a single line from the user.

Here are some examples of these commands. First a program which asks yes or no...

#!/bin/sh

#

Yes or no

#

echo "Please answer yes or no: "

answer=`line < /dev/tty`

case $answer in

y* | Y* | j* | J*) echo YES!! ;;

n* | N*) echo NO!! ;;

*) echo "Can't you answer a simple question?"

Chapter 6: Bourne shell 69

esac

echo The end

Notice the use of pattern matching and the `|' `OR' symbol.

#!/bin/sh

#

Kernel check

#

if test ! -f /vmunix # Check that the kernel is there!

then

echo "This is not BSD unix...hmmm"

if [-f /hp-ux]

then

echo "It's a Hewlett Packard machine!"

fi

elif [-w /vmunix]

then

echo "HEY!! The kernel is writable my me!";

else

echo "The kernel is write protected."

echo "The system is safe from me today."

fi

6.9 Loops in sh

The loop structures in the Bourne shell have the following syntax.

while unix-command

do

commands

done

The �rst command will most likely be a test but, as before, it could in principle be any UNIX

command. The `until' loop, reminiscent of BCPL, carries out a task until its argument

evaluates to TRUE.

until unix-command

do

commands

done

Finally the `for' structure has already been used above.

for variable in list

do

commands

done

Often we want to be able to use an array of values as the list which for parses, but

Bourne shell has no array variables. This problem is usually solved by making a long string

separated by, for example, colons. For example, the $PATH variable has the form

70 The unix programming environment

PATH = /usr/bin:/bin:/local/gnu/bin

Bourne shell allows us to split such a string on whatever character we wish. Normally the

split is made on spaces, but the variable `IFS' can be de�ned with a replacement. To make

a loop over all directories in the command path we would therefore write

IFS=:

for name in $PATH; do

commands

done

The best way to gain experience with these commands is through some examples.

#!/bin/sh

#

Get text from user repeatedly

#

echo "Type away..."

while read TEXT

do

echo You typed $TEXT

if ["$TEXT" = "quit"]; then

echo "(So I quit!)"

exit 0

fi

done

echo "HELP!"

This very simple script is a typical use for a while-loop. It gets text repeatedly until the

user type `quit'. Since read never returns `false' unless an error occurs or it detects an EOF

(end of �le) character hCTRL-Di, it will never exit without some help from an `if' test. If it

does receive a hCTRL-Di signal, the script prints `HELP!'.

#!/bin/sh

#

Watch in the background for a particular user

and give alarm if he/she logs in

#

To be run in the background, using &

#

if [$# -ne 1]; then

echo "Give the name of the user as an argument" > /dev/tty

Chapter 6: Bourne shell 71

exit 1

fi

echo "Looking for $1"

until users | grep -s $1

do

sleep 60

done

echo "!!! WAKE UP !!!" > /dev/tty

echo "User $1 just logged in" > /dev/tty

This script uses `grep' in `silent mode' (-s option). i.e. grep never writes anything to

the terminal. The only thing we are interested in is the return code the piped command

produces. If `grep' detects a line containing the username we are interested in, then the

result evaluates to TRUE and the sleep-loop exits.

Our �nal example is the kind of script which is useful for a system administrator. It

transfers over the Network Information Service database �les so that a slave server is up to

date. All we have to do is make a list of the �les and place it in a `for' loop. The names

used below are the actual names of the NIS maps, well known to system administrators.

#!/bin/sh

#

Update the NIS database maps on a client server. This program

shouldn't have to be run, but sometimes things go wrong and we

have to force a download from the main sever.

#

PATH=/etc/yp:/usr/etc/yp:$PATH

MASTER=myNISserver

for map in auto.direct auto.master ethers.byaddr ethers.byname\

group.bygid group.byname hosts.byaddr hosts.byname\

mail.aliases netgroup.byhost netgroup.byuser netgroup\

netid.byname networks.byaddr networks.byname passwd.byname\

passwd.byuid priss.byname protocols.byname protocols.bynumber\

rpc.bynumber services.byname services usenetgroups.byname;

do

ypxfr $1 -h $MASTER $map

done

6.10 Procedures and traps

One of the worthy features of the Bourne shell is that it allows you to de�ne subroutines

or procedures. Subroutines work just like subroutines in any other programming language.

They are executed in same shell (not as a sub-process).

72 The unix programming environment

Here is an interesting program which demonstrates two useful things at the same time.

First of all, it shows how to make a hierachical subroutine structure using the Bourne shell.

Secondly, it shows how the `trap' directive can be used to trap signals, so that Bourne shell

programs can exit safely when they are killed or when CTRL-C is typed.

#!/bin/sh

#

How to make a signal handler in Bourne Shell

using subroutines

#

###

Level 2

###

ReallyQuit()

{

while true

do

echo "Do you really want to quit?"

read answer

case $answer in

y* | Y*) return 0;;

*) echo "Resuming..."

return 1;;

esac

done

}

###

Level 1

###

SignalHandler()

{

if ReallyQuit # Call a function

then

exit 0

else

return 0

fi

}

###

Level 0 : main program

Chapter 6: Bourne shell 73

###

trap SignalHandler 2 15 # Trap kill signals 2 and 15

echo "Type some lines of text..."

while read text

do

echo "$text - CTRL-C to exit"

done

Note that the logical tree structure of this program is upside down (the highest level

comes at the bottom). This is because all subroutines must be de�ned before they are used.

This example concludes our brief survey of the Bourne shell.

6.11 setuid and setgid scripts

The superuser `root' is the only privileged user in UNIX. All other users have only

restricted access to the system. Usually this is desirable, but sometimes it is a nuisance.

A setuid script is a script which has its setuid-bit set. When such a script is executed

by a user, it is run with all the rights and privileges of the owner of the script. All of the

commands in the script are executed as the owner of the �le and not with the user-id of the

person who ran the script. If the owner of the setuid script is `root' then the commands in

the script are run with root privileges!

Setuid scripts are clearly a touchy security issue. When giving away one's rights to

another user (especially those of `root') one is tempting hackers. Setuid scripts should be

avoided.

A setgid program is almost the same, but only the group id is set to that of the owner

of the �le. Often the e�ect is the same.

An example of a setuid program is the `ps' program. `ps' lists all of the processes running

in the kernel. In order to do this it needs permission to access the private data structures in

the kernel. By making `ps' setgid root, it allows ordinary users to be able to read as much

as the writers of `ps' thought �t, but no more.

Naturally, only the superuser can make a �le setuid or setgid root.

6.12 Summary: Limitations of shell programming

To summarize the last two long and oppressive chapters we shall take a step back from

the details and look at what we have achieved.

The idea behind the shell is to provide a user interface, with access to the system's

facilities at a simple level. In the 70's user interfaces were not deisgned to be user-friendly.

The UNIX shell is not particularly use friendly, but it is very powerful. Perhaps it would

have been enough to provide only commands to allow users to write C programs. Since

74 The unix programming environment

all of the system functions are available from C, that would certainly allow everyone to do

what anything that UNIX can do. But shell programming is much more immediate than

C. It is an environment of frequently used tools. Also for quick programming solutions: C is

a compiled language, whereas the shell is an interpreter. A quick shell program can solve

many problems in no time at all, without having to compile anything.

Shell programming is only useful for `quick and easy' programs. To use it for anything

serious is an abuse. Programming di�cult things in shell is clumsy, and it is di�cult to

get returned-information (like error messages) back in a useful form. Besides, shell scripts

are slow compared to real programs since they involve starting a new program for each new

command.

These di�culties are solved partly by Perl, which we shall consider next { but in the

�nal analysis, real programs of substance need to be written in C. Contrary to popular

belief, this is not more di�cult than programming in the shell { in fact, many things are

much simpler, because all of the shell commands originated as C functions. The shell is an

extra layer of the UNIX onion which we have to battle our way through to get where we're

going.

Sometimes it is helpful to be shielded from low level details { sometimes it is a hindrance.

In the remaining chapters we shall consider more involved programming needs.

6.13 Exercises

1. Write an improved `which' command in C-shell.

2. Make a counter program which records in a �le how many times you log in to your

account. You can call this in your .cshrc �le.

3. Make a Bourne shell script to kill all the processes owned by a particular user. (Note,

that if you are not the superuser, you cannot kill processes owned by other users.)

4. Write a script to replace the `rm' command with something safer. Think about a way

of implementing `rm' so that it is possible to get deleted �les back again in case of

emergencies. This is not possible using the normal `rm' command. Hint: save �les in a

hidden directory `.deleted'. Make your script delete �les in the `.deleted' directory

if they are older than a week, so that you don't �ll up the disk with rubbish.

5. Suppose you have a bunch of �les with a particular �le-extension: write a script in csh

to change the extension to something else. e.g. to change *.C into *.c. Give the old

and new extensions as arguments to the script.

6. Write a program in sh to search for �les in the current directory which contain a

certain string. e.g. search for all �les which contain the word "if". Hint: use the "�nd"

command.

7. Use the manual pages to �nd out about the commands `at', `batch' and `atq'. Test

these commands by executing the shell command `date' at some time of your choice.

Use the `-m' option so that the result of the job is mailed to you.

8. Write a script in sh or csh to list all of the �les bigger than a certain size starting from

the current directory, and including all subdirectories. This kind of program is useful

for system administrators when a disk becomes full.

Chapter 7: Perl 75

7 Perl

So far, we have been looking at shell programming for performing fairly simple tasks.

Now let's extend the idea of shell programming to cover more complex tasks like systems

programming and network communications. Perl is a language which was designed to retain

the immediateness of shell languages, but at the same time capture some of the
exibility

of C. Perl is an acronym for Practical extraction and report language. In this chapter, we

shall not aim to teach Perl from scratch { the best way to learn it is to use it! Rather we

shall concentrate on demonstrating some principles.

7.1 Sed and awk, cut and paste

One of the reasons for using Perl is that it is extremely good at text�le handling{one of

the most important things for UNIX users, and particularly useful in connection with CGI

script processing on the World Wide Web. It has simple built-in constructs for searching

and replacing text, storing information in arrays and retrieving them in sorted form. All of

the these things have previously been possible using the UNIX shell commands

sed

awk

cut

paste

but these commands were designed to work primarily in the Bourne shell and are a bit

`awk'ward to use for all but the simplest applications.

`sed' is a stream editor. It takes command line instructions, reads input from the

stream stdin and produces output on stdout according to those instructions.

`sed' works line by line from the start of a text�le.

`awk' is a pattern matching and processing language. It takes a text�le and reads it

line by line, matching regular expressions and acting on them. `awk' is powerful

enough to have conditional instructions like `if..then..else' and uses C's

`printf' construction for output.

`cut' Takes a line of input and cuts it into �elds, separated by some character. For

instance, a normal line of text is a string of words separated by spaces. Each

word is a di�erent �eld. `cut' can be used, for instance, to pick out the third

column in a table. Any character can be speci�ed as the separator.

`paste' is the logical opposite of cut. It concatenates n �les, and makes each line in the

�le into a column of a table. For instance, `paste one two three' would make

a table in which the �rst column consisted of all lines in `one', the second of all

lines in `two' and the third of all lines in `three'. If one �le is longer than the

others, then some columns have blank spaces.

Perl uni�es all of these operations and more. It also makes them much simpler.

76 The unix programming environment

7.2 Program structure

To summarize Perl, we need to know about the structure of a Perl program, the con-

ditional constructs it has, its loops and its variables. In the latest versions of Perl (Perl

5), you can write object oriented programs of great complexity. We shall not go into this

depth, for the simple reason that Perl's strength is not as a general programming language

but as a specialized language for text�le handling. The syntax of Perl is in many ways like

the C programming language, but there are important di�erences.

� Variables do not have types. They are interpreted in a context sensitive way. The

operators which acts upon variables determine whether a variable is to be considered

a string or as an integer etc.

� Although there are no types, Perl de�nes arrays of di�erent kinds. There are three

di�erent kinds of array, labelled by the symbols `$', `@' and `%'.

� Perl keeps a number of standard variables with special names e.g. `$_ @ARGV' and

`%ENV'. Special attention should be paid to these. They are very important!

� The shell reverse apostrophe notation `command` can be used to execute UNIX pro-

grams and get the result into a Perl variable.

Here is a simple `structured hello world' program in Perl. Notice that subroutines are

called using the `&' symbol. There is no special way of marking the main program { it is

simply that part of the program which starts at line 1.

#!/local/bin/perl

#

Comments

#

&Hello();

&World;

end of main

sub Hello

{

print "Hello";

}

sub World

{

print "World\n";

}

The parentheses on subroutines are optional, if there are no parameters passed. Notice that

each line must end in a semi-colon.

7.3 Perl variables

Chapter 7: Perl 77

7.3.1 Scalar variables

In Perl, variables do not have to be declared before they are used. Whenever you use

a new symbol, Perl automatically adds the symbol to its symbol table and initializes the

variable to the empty string.

It is important to understand that there is no practical di�erence between zero and the

empty string in perl { except in the way that you, the user, choose to use it. Perl makes

no distinction between strings and integers or any other types of data { except when it

wants to interpret them. For instance, to compare two variables as strings is not the same

as comparing them as integers, even if the string contains a textual representation of an

integer. Take a look at the following program.

#!/local/bin/perl

#

Nothing!

#

print "Nothing == $nothing\n";

print "Nothing is zero!\n" if ($nothing == 0);

if ($nothing eq "")

{

print STDERR "Nothing is really nothing!\n";

}

$nothing = 0;

print "Nothing is now $nothing\n";

The output from this program is

Nothing ==

Nothing is zero!

Nothing is really nothing!

Nothing is now 0

There are several important things to note here. First of all, we never declare the variable

`nothing'. When we try to write its value, perl creates the name and associates a NULL

value to it i.e. the empty string. There is no error. Perl knows it is a variable because of

the `$' symbol in front of it. All scalar variables are identi�ed by using the dollar symbol.

Next, we compare the value of `$nothing' to the integer `0' using the integer comparison

symbol `==', and then we compare it to the empty string using the string comparison symbol

`eq'. Both tests are true! That means that the empty string is interpreted as having a

numerical value of zero. In fact any string which does not form a valid integer number has

a numerical value of zero.

Finally we can set `$nothing' explicitly to a valid integer string zero, which would now

pass the �rst test, but fail the second.

78 The unix programming environment

As extra spice, this program also demonstrates two di�erent ways of writing the `if'

command in perl.

7.3.2 The default scalar variable.

The special variable `$_' is used for many purposes in Perl. It is used as a bu�er to contain

the result of the last operation, the last line read in from a �le etc. It is so general that

many functions which act on scalar variables work by default on `$_' if no other argument

is speci�ed. For example,

print;

is the same as

print $_;

7.3.3 Array (vector) variables

The complement of scalar variables is arrays. An array, in Perl is identi�ed by the `@'

symbol and, like scalar variables, is allocated and initialized dynamically.

@array[0] = "This little piggy went to market";

@array[2] = "This little piggy stayed at home";

print "@array[0] @array[1] @array[2]";

The index of an array is always understood to be a number, not a string, so if you use a

non-numerical string to refer to an array element, you will always get the zeroth element,

since a non-numerical string has an integer value of zero.

An important array which every program de�nes is

@ARGV

This is the argument vector array, and contains the commands line arguments by analogy

with the C-shell variable `$argv[]'.

Given an array, we can �nd the last element by using the `$#' operator. For example,

$last_element = $ARGV[$#ARGV];

Notice that each element in an array is a scalar variable. The `$#' cannot be interpreted

directly as the number of elements in the array, as it can in the C-shell. You should

experiment with the value of this quantity { it often necessary to add 1 or 2 to its value in

order to get the behaviour one is used to in the C-shell.

Perl does not support multiple-dimension arrays directly, but it is possible to simulate

them yourself. (See the Perl book.)

7.3.4 Special array commands

The `shift' command acts on arrays and returns and removes the �rst element of the

array. Afterwards, all of the elements are shifted down one place. So one way to read the

elements of an array in order is to repeatedly call `shift'.

Chapter 7: Perl 79

$next_element=shift(@myarray);

Note that, if the array argument is omitted, then `shift' works on `@ARGV' by default.

Another useful function is `split', which takes a string and turns it into an array

of strings. `split' works by choosing a character (usually a space) to delimit the array

elements, so a string containing a sentence separated by spaces would be turned into an

array of words. The syntax is

@array = split; # works with spaces on $_

@array = split(pattern,string); # Breaks on pattern

($v1,$v2...) = split(pattern,string); # Name array elements with scalars

In the �rst of these cases, it is assumed that the variable `$_' is to be split on whitespace

characters. In the second case, we decide on what characterthe split is to take place and on

what string the function is to act. For instance

@new_array = split(":","name:passwd:uid:gid:gcos:home:shell");

The result is a seven element array called `@new_array', where `$new_array[0]' is `name'

etc.

In the �nal example, the left hand side shows that we wish to capture elements of the array

in a named set of scalar variables. If the number of variables on the lefthand side is fewer

than the number of strings which are generated on the right hand side, they are discarded.

If the number on the left hand side is greater, then the remainder variables are empty.

7.3.5 Associated arrays

One of the very nice features of Perl is the ability to use one string as an index to

another string in an array. For example, we can make a short encyclopaedia of zoo animals

by constructing an associative array in which the keys (or indices) of the array are the

names of animals, and the contents of the array are the information about them.

$animals{"Penguin"} = "A suspicious animal, good with cheese crackers...";

$animals{"dog"} = "Plays stupid, but could be a cover...";

if ($index eq "fish")

{

$animals{$index} = "Often comes in square boxes. Very cold.";

}

An entire associated array is written `%array', while the elements are `$array{$key}'.

Perl provides a special associative array for every program called `%ENV'. This contains

the environment variables de�ned in the parent shell which is running the Perl program.

For example

print "Username = $ENV{"USER"}\n";

$ld = "LD_LIBRARY_PATH";

print "The link editor path is $ENV{$ld}\n";

To get the current path into an ordinary array, one could write,

@path_array= split(":",$ENV{"PATH"});

80 The unix programming environment

7.3.6 Array example program

Here is an example which prints out a list of �les in a speci�ed directory, in order of

their UNIX protection bits. The least protected �le �les come �rst.

#!/local/bin/perl

#

Demonstration of arrays and associated arrays.

Print out a list of files, sorted by protection,

so that the least secure files come first.

#

e.g. arrays <list of words>

arrays *.C

#

##

print "You typed in ",$#ARGV+1," arguments to command\n";

if ($#ARGV < 1)

{

print "That's not enough to do anything with!\n";

}

while ($next_arg = shift(@ARGV))

{

if (! (-f $next_arg || -d $next_arg))

{

print "No such file: $next_arg\n";

next;

}

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size) = stat($next_arg);

$octalmode = sprintf("%o",$mode & 0777);

$assoc_array{$octalmode} .= $next_arg.

" : size (".$size."), mode (".$octalmode.")\n";

}

print "In order: LEAST secure first!\n\n";

foreach $i (reverse sort keys(%assoc_array))

{

print $assoc_array{$i};

}

Chapter 7: Perl 81

7.4 Loops and conditionals

Here are some of the most commonly used decision-making constructions and loops in

Perl. The following is not a comprehensive list { for that, you will have to look in the

Perl bible: Programming Perl, by Larry Wall and Randal Schwartz. The basic pattern

follows the C programming language quite closely. In the case of the `for' loop, Perl has

both the C-like version, called `for' and a `foreach' command which is like the C-shell

implementation.

if (expression)

{

block;

}

else

{

block;

}

command if (expression);

unless (expression)

{

block;

}

else

{

block;

}

while (expression)

{

block;

}

do

{

block;

}

while (expression);

for (initializer; expression; statement)

{

block;

}

foreach variable(array)

{

block;

}

82 The unix programming environment

In all cases, the `else' clauses may be omitted.

Strangely, perl does not have a `switch' statement, but the Perl book describes how to

make one using the features provided.

7.4.1 The for loop

The for loop is exactly like that in C or C++ and is used to iterate over a numerical

index, like this:

for ($i = 0; $i < 10; $i++)

{

print $i, "\n";

}

7.4.2 The foreach loop

The foreach loop is like its counterpart in the C shell. It is used for reading elements

one by one from a regular array. For example,

foreach $i (@array)

{

print $i, "\n";

}

7.4.3 Iterating over elements in arrays

One of the main uses for `for' type loops is to iterate over successive values in an array.

This can be done in two ways which show the essential di�erence between for and foreach.

If we want to fetch each value in an array in turn, without caring about numerical indices,

the it is simpest to use the foreach loop.

@array = split(" ","a b c d e f g");

foreach $var (@array)

{

print $var, "\n";

}

This example prints each letter on a separate line. If, on the other hand, we are interested

in the index, for the purposes of some calculation, then the for loop is preferable.

@array = split(" ","a b c d e f g");

for ($i = 0; $i <= $#array; $i++)

{

Chapter 7: Perl 83

print $array[$i], "\n";

}

Notice that, unlike the for-loop idiom in C/C++, the limit is `$i <= $#array', i.e. `less than

or equal to' rather than `less than'. This is because the `$#' operator does not return the

number of elements in the array but rather the last element.

Associated arrays are slightly di�erent, since they do not use numerical keys. Instead

they use a set of strings, like in a database, so that you can use one string to look up another.

In order to iterate over the values in the array we need to get a list of these strings. The

keys command is used for this.

$assoc{"mark"} = "cool";

$assoc{"GNU"} = "brave";

$assoc{"zebra"} = "stripy";

foreach $var (keys %assoc)

{

print "$var , $assoc{$var} \n";

}

The order of the keys is not de�ned in the above example, but you can choose to sort them

alphabetically by writing

foreach $var (sort keys %assoc)

instead.

7.4.4 Iterating over lines in a �le

Since Perl is about �le handling we are very interested in reading �les. Unlike C and

C++, perl likes to read �les line by line. The angle brackets are used for this, See Section 7.5

[Files in perl], page 84. Assuming that we have some �le handle `<file>', for instance

`<STDIN>', we can always read the �le line by line with a while-loop like this.

while ($line = <file>)

{

print $line;

}

Note that $line includes the end of line character on the end of each line. If you want to

remove it, you should add a `chop' command:

while ($line = <file>)

{

chop $line;

print "line = ($line)\n";

}

84 The unix programming environment

7.5 Files in perl

Opening �les is straightforward in Perl. Files must be opened and closed using { wait

for it { the commands `open' and `close'. You should be careful to close �les after you

have �nished with them { especially if you are writing to a �le. Files are bu�ered and often

large parts of a �le are not actually written until the `close' command is received.

Three �les are, of course, always open for every program, namely `STDIN', `STDOUT'and

`STDERR'.

Formally, to open a �le, we must obtain a �le descriptor or �le handle. This is done

using `open';

open (file_descrip,"Filename");

The angular brackets `<..>' are used to read from the �le. For example,

$line = <file_descrip>;

reads one line from the �le associated with `file_descrip'.

Let's look at some examples of �ling opening. Here is how we can implement UNIX's

`cut' and `paste' commands in perl:

#!/local/bin/perl

#

Cut in perl

#

Cut second column

while (<>)

{

@cut_array = split;

print "@cut_array[1]\n";

}

This is the simplest way to open a �le. The empty �le descriptor `<>' tells perl to take the

argument of the command as a �lename and open that �le for reading. This is really short

for `while($_=<STDIN>)' with the standard input redirected to the named �le.

The `paste'program can be written as follows:

#!/local/bin/perl

#

Paste in perl

#

Two files only, syntax : paste file 1file2

#

open (file1,"@ARGV[0]") || die "Can't open @ARGV[0]\n";

open (file2,"@ARGV[1]") || die "Can't open @ARGV[1]\n";

while (($line1 = <file1>) || ($line2 = <file2>))

Chapter 7: Perl 85

{

chop $line1;

chop $line2;

print "$line1 $line2\n"; # tab character between

}

Here we see more formally how to read from two separate �les at the same time. Notice

that, by putting the read commands into the test-expression for the `while' loop, we are

using the fact that `<..>' returns a non-zero (true) value unless we have reached the end of

the �le.

To write and append to �les, we use the shell redirection symbols inside the `open'

command.

open(fd,"> filename"); # open file for writing

open(fd,">> filename"); # open file for appending

We can also open a pipe from an arbitrary UNIX command and receive the output of that

command as our input:

open (fd,"/bin/ps aux | ");

7.5.1 A simple perl program

Let us now write the simplest perl program which illustrates the way in which perl can

save time. We shall write it in three di�erent ways to show what the short cuts mean. Let

us implement the `cat' command, which copies �les to the standard output. The simplest

way to write this is perl is the following:

#!/local/bin/perl

while (<>)

{

print;

}

Here we have made heavy use of the many default assumptions which perl makes. The

program is simple, but di�cult to understand for novices. First of all we use the default �le

handle <> which means, take one line of input from a default �le. This object returns true

as long as it has not reached the end of the �le, so this loop continues to read lines until it

reaches the end of �le. The default �le is standard input, unless this script is invoked with

a command line argument, in which case the argument is treated as a �lename and perl

attempts to open the argument-�lename for reading. The print statement has no argument

telling it what to print, but perl takes this to mean: print the default variable `$_'.

We can therefore write this more explicitly as follows:

#!/local/bin/perl

open (HANDLE,"$ARGV[1]");

86 The unix programming environment

while (<HANDLE>)

{

print $_;

}

Here we have simply �lled in the assumptions explicitly. The command `<HANDLE>' now

reads a single line from the named �le-handle into the default variable `$_'. To make this

program more general, we can elimiate the defaults entirely.

#!/local/bin/perl

open (HANDLE,"$ARGV[1]");

while ($line=<HANDLE>)

{

print $line;

}

7.5.2 == and `eq'

Be careful to distinguish between the comparison operator for integers `==' and the

corresponding operator for strings `eq'. These do not work in each other's places so if you

get the wrong comparison operator your program might not work and it is quite di�cult to

�nd the error.

7.5.3 chop

The command `chop' cuts o� the last character of a string. This is useful for removing

newline characters when reading �les etc. The syntax is

chop; # chop $_;

chop $scalar; # remove last character in $scalar

7.6 Perl subroutines

Subroutines are indicated, as in the example above, by the ampersand `&' symbol. When

parameters are passed to a Perl subroutine, they are handed over as an array called `@_'.

Which is analogous to the `$_' variable. Here is a simple example:

#!/local/bin/perl

$a="silver";

$b="gold";

&PrintArgs($a,$b);

end of main

sub PrintArgs

Chapter 7: Perl 87

{

($local_a,$local_b) = @_;

print "$local_a, $local_b\n";

}

7.7 die - exit on error

When a program has to quit and give a message, the `die' command is normally used.

If called without an argument, Perl generates its own message including a line number at

which the error occurred. To include your own message, you write

die "My message....";

If the string is terminated with a `\n' newline character, the line number of the error is not

printed, otherwise Perl appends the line number to your string.

When opening �les, it is common to see the syntax:

open (filehandle,"Filename") || die "Can't open...";

The logical `OR' symbol is used, because `open' returns true if all goes well, in which case

the right hand side is never evaluated. If `open' is false, then die is executed. You can

decide for yourself whether or not you think this is good programming style { we mention

it here because it is common practice.

7.8 The stat() idiom

The unix library function stat() is used to �nd out information about a given �le. This

function is available both in C and in Perl. In perl, it returns an array of values. Usually we

are interested in knowing the access permissions of a �le. stat() is called using the syntax

@array = stat ("�lename");

or alternatively, using a named array

($device,$inode,$mode) = stat("�lename");

The value returned in the mode variable is a bit-pattern, See Section 4.1 [Protection

bits], page 37. The most useful way of treating these bit patterns is to use octal numbers

to interpret their meaning.

To �nd out whether a �le is readable or writable to a group of users, we use a program-

ming idiom which is very common for dealing with bit patterns: �rst we de�ne a mask

which zeroes out all of the bits in the mode string except those which we are speci�cally

interested in. This is done by de�ning a mask value in which the bits we want are set to 1

and all others are set to zero. Then we AND the mask with the mode string. If the result

is di�erent from zero then we know that all of the bits were also set in the mode string. As

in C, the bitwise AND operator in perl is called `&'.

88 The unix programming environment

For example, to test whether a �le is writable to other users in the same group as the

�le, we would write the following.

$mask = 020; # Leading 0 means octal number

($device,$inode,$mode) = stat("�le");

if ($mode & $mask)

{

print "File is writable by the group\n";

}

Here the 2 in the second octal number means "write", the fact that it is the second octal

number from the right means that it refers to "group". Thus the result of the if-test is only

true if that particular bit is true. We shall see this idiom in action below.

7.9 Perl example programs

7.9.1 The passwd program and `crypt()' function

Here is a simple implementation of the UNIX `passwd' program in Perl.

#!/local/bin/perl

#

A perl version of the passwd program.

#

Note - the real passwd program needs to be much more

secure than this one. This is just to demonstrate the

use of the crypt() function.

#

###

print "Changing passwd for $ENV{'USER'} on $ENV{'HOST'}\n";

system 'stty','-echo';

print "Old passwd: ";

$oldpwd = <STDIN>;

chop $oldpwd;

($name,$coded_pwd,$uid,$gid,$x,$y,$z,$gcos,$home,$shell)

= getpwnam($ENV{"USER"});

if (crypt($oldpwd,$coded_pwd) ne $coded_pwd)

{

print "\nPasswd incorrect\n";

exit (1);

Chapter 7: Perl 89

}

$oldpwd = ""; # Destroy the evidence!

print "\nNew passwd: ";

$newpwd = <STDIN>;

print "\nRepeat new passwd: ";

$rnewpwd = <STDIN>;

chop $newpwd;

chop $rnewpwd;

if ($newpwd ne $rnewpwd)

{

print "\n Incorrectly typed. Password unchanged.\n";

exit (1);

}

$salt = rand();

$new_coded_pwd = crypt($newpwd,$salt);

print "\n\n$name:$new_coded_pwd:$uid:$gid:$gcos:$home:$shell\n";

7.9.2 Example with `fork()'

The following example uses the `fork' function to start a daemon which goes into the

background and watches the system to which process is using the greatest amount of CPU

time each minute. A pipe is opened from the BSD `ps' command.

#!/local/bin/perl

#

A fork() demo. This program will sit in the background and

make a list of the process which uses the maximum CPU average

at 1 minute intervals. On a quiet BSD like system this will

normally be the swapper (long term scheduler).

#

$true = 1;

$logfile="perl.cpu.logfile";

print "Max CPU logfile, forking daemon...\n";

if (fork())

{

exit(0);

90 The unix programming environment

}

while ($true)

{

open (logfile,">> $logfile") || die "Can't open $logfile\n";

open (ps,"/bin/ps aux |") || die "Couldn't open a pipe from ps !!\n";

$skip_first_line = <ps>;

$max_process = <ps>;

close(ps);

print logfile $max_process;

close(logfile);

sleep 60;

($a,$b,$c,$d,$e,$f,$g,$size) = stat($logfile);

if ($size > 500)

{

print STDERR "Log file getting big, better quit!\n";

exit(0);

}

}

7.9.3 Example reading databases

Here is an example program with several of the above features demonstrated simultane-

ously. This following program lists all users who have home directories on the current host.

If the home area has sub-directories, corresponding to groups, then this is speci�ed on the

command line. The word `home' causes the program to print out the home directories of

the users.

#!/local/bin/perl

##

#

allusers - list all users on named host, i.e. all

users who can log into this machine.

#

Syntax: allusers group

allusers mygroup home

allusers myhost group home

#

NOTE : This command returns only users who are registered on

the current host. It will not find users which cannot

be validated in the passwd file, or in the named groups

in NIS. It assumes that the users belonging to

different groups are saved in subdirectories of

/home/hostname.

Chapter 7: Perl 91

#

##

&arguments();

die "\n" if (! -d "/home/$server");

$disks = `/bin/ls -d /home/$server/$group`;

foreach $home (split(/\s/,$disks))

{

open (LS,"cd $home; /bin/ls $home |") || die "allusers: Pipe didn't open";

while (<LS>)

{

$exists = "";

($user) = split;

($exists,$pw,$uid,$gid,$qu,$cm,$gcos,$dir)=getpwnam($user);

if ($exists)

{

if ($printhomes)

{

print "$dir\n";

}

else

{

print "$user\n";

}

}

}

close(LS);

}

##

sub arguments

{

$printhomes = 0;

$group = "*";

$server = `/bin/hostname`;

chop $server;

foreach $arg (@ARGV)

{

if (substr($arg,0,1) eq "u")

{

$group = $arg;

next;

92 The unix programming environment

}

if ($arg eq "home")

{

$printhomes = 1;

next;

}

$server= $arg; #default is to interpret as a server.

}

}

7.10 Pattern matching and extraction

Perl has regular expression operators for identifying patterns. The operator

/regular expression/

returns true of false depending on whether the regular expression matches the contents of

$_. For example

if (/perl/)

{

print "String contains perl as a substring";

}

if (/(Sat|Sun)day/)

{

print "Weekend day....";

}

The e�ect is rather like the grep command. To use this operator on other variables you

would write:

$variable =~ /regexp/

Regular expression can contain parenthetic sub-expressions, e.g.

if (/(Sat|Sun)day (..)th (.*)/)

{

$first = $1;

$second = $2;

$third = $3;

}

in which case perl places the objects matched by such sub-expressions in the variables $1,

$2 etc.

Chapter 7: Perl 93

7.11 Searching and replacing text

The `sed'-like function for replacing all occurances of a string is easily implemented in Perl

using

while (<input>)

{

s/$search/$replace/g;

print output;

}

This example replaces the string inside the default variable. To replace in a general variable

we use the operator `=~', with syntax:

$variable =~ s/search/replace/

Here is an example of some of this operator in use. The following is a program which

searches and replaces a string in several �les. This is useful program indeed for making a

change globally in a group of �les! The program is called `�le-replace'.

#!/local/bin/perl

##

#

Look through files for findstring and change to newstring

in all files.

#

##

#

Define a temporary file and check it doesn't exist

#

$outputfile = "tmpmarkfind";

unlink $outputfile;

#

Check command line for list of files

#

if ($#ARGV < 0)

{

die "Syntax: file-replace [file list]\n";

}

print "Enter the string you want to find (Don't use quotes):\n\n:";

$findstring=<STDIN>;

chop $findstring;

print "Enter the string you want to replace with (Don't use quotes):\n\n:";

$replacestring=<STDIN>;

chop $replacestring;

#

94 The unix programming environment

print "\nFind: $findstring\n";

print "Replace: $replacestring\n";

print "\nConfirm (y/n) ";

$y = <STDIN>;

chop $y;

if ($y ne "y")

{

die "Aborted -- nothing done.\n";

}

else

{

print "Use CTRL-C to interrupt...\n";

}

#

Now shift default array @ARGV to get arguments 1 by 1

#

while ($file = shift)

{

if ($file eq "file-replace")

{

print "Findmark will not operate on itself!";

next;

}

#

Save existing mode of file for later

#

($dev,$ino,$mode)=stat($file);

open (INPUT,$file) || warn "Couldn't open $file\n";

open (OUTPUT,"> $outputfile") || warn "Can't open tmp";

$notify = 1;

while (<INPUT>)

{

if (/$findstring/ && $notify)

{

print "Fixing $file...\n";

$notify = 0;

}

s/$findstring/$replacestring/g;

print OUTPUT;

}

Chapter 7: Perl 95

close (OUTPUT);

#

If nothing went wrong (if outfile not empty)

move temp file to original and reset the

file mode saved above

#

if (! -z $outputfile)

{

rename ($outputfile,$file);

chmod ($mode,$file);

}

else

{

print "Warning: file empty!\n.";

}

}

Similarly we can search for lines containing a string. Here is the grep program written in

perl

#!/local/bin/perl

#

grep as a perl program

#

Check arguments etc

while (<>)

{

print if (/$ARGV[1]/);

}

The operator `/search-string/' returns true if the search string is a substring of the default

variable $_. To search an arbitrary string, we write

.... if (teststring =~ /search-string/);

Here teststring is searched for occurrances of search-string and the result is true if one is

found.

In perl you can use regular expressions to search for text patterns. Note however that,

like all regular expression dialects, perl has its own conventions. For example the dollar

sign does not mean "match the end of line" in perl, instead one uses the `\n' symbol. Here

is an example program which illustrates the use of regular expressions in perl:

#!/local/bin/perl

#

Test regular expressions in perl

#

NB - careful with \ $ * symbols etc. Use '' quotes since

96 The unix programming environment

the shell interprets these!

#

open (FILE,"regex_test");

$regex = $ARGV[$#ARGV];

print "Looking for $ARGV[$#ARGV] in file...\n";

while (<FILE>)

{

if (/$regex/)

{

print;

}

}

#

Test like this:

#

regex '.*' - prints every line (matches everything)

regex '.' - all lines except those containing only blanks

(. doesn't match ws/white-space)

regex '[a-z]' - matches any line containing lowercase

regex '[^a-z]' - matches any line containg something which is

not lowercase a-z

regex '[A-Za-z]' - matches any line containing letters of any kind

regex '[0-9]' - match any line containing numbers

regex '#.*' - line containing a hash symbol followed by anything

regex '^#.*' - line starting with hash symbol (first char)

regex ';\n' - match line ending in a semi-colon

#

Try running this program with the test data on the following �le which is called `regex_test'

in the example program.

A line beginning with a hash symbol

JUST UPPERCASE LETTERS

just lowercase letters

Letters and numbers 123456

123456

A line ending with a semi-colon;

Chapter 7: Perl 97

Line with a comment # COMMENT...

7.12 Example: convert mail to WWW pages

Here is an example program which you could use to automatically turn a mail message

of the form

From: Newswire

To: Mail2html

Subject: Nothing happened

On the 13th February at kl. 09:30 nothing happened. No footprints

were found leading to the scene of a terrible murder, no evidence

of a struggle etc etc

into an html-�le for the world wide web. The program works by extracting the message

body and subject from the mail and writing html-commands around these to make a web

page. The subject �eld of the mail becomes the title. The other headers get skipped,

since the script searches for lines containing the sequence "colon-space" or `: '. A regular

expression is used for this.

#!/local/bin/perl

#

Make HTML from mail

#

&BeginWebPage();

&ReadNewMail();

&EndWebPage();

##

sub BeginWebPage

{

print "<HTML>\n";

print "<BODY>\n";

}

##

sub EndWebPage

{

print "</BODY>\n";

print "</HTML>\n";

}

98 The unix programming environment

##

sub ReadNewMail

{

while (<>)

{

if (/Subject:/) # Search for subject line

{

Extract subject text...

chop;

($left,$right) = split(":",$_);

print "<H1> $right </H1>\n";

next;

}

elsif (/.*: .*/) # Search for - anything: anything

{

next; # skip other headers

}

print;

}

}

7.13 Generate WWW pages automagically

The following program scans through the password database and build a standardized

html-page for each user it �nds there. It �lls in the name of the user in each case. Note

the use of the `<<' operator for extended input, already used in the context of the shell, See

Section 5.4 [Pipes and redirection], page 43. This allows us to format a whole passage of

text, inserting variables at strategic places, and avoid having to the print over many lines.

#!/local/bin/perl

#

Build a default home page for each user in /etc/passwd

#

#

##

Level 0 (main)

##

$true = 1;

$false = 0;

First build an associated array of users and full names

Chapter 7: Perl 99

setpwent();

while ($true)

{

($name,$passwd,$uid,$gid,$quota,$comment,$fullname) = getpwent;

$FullName{$name} = $fullname;

print "$name - $FullName{$name}\n";

last if ($name eq "");

}

print "\n";

Now make a unique filename for each page and open a file

foreach $user (sort keys(%FullName))

{

next if ($user eq "");

print "Making page for $user\n";

$outputfile = "$user.html";

open (OUT,"> $outputfile") || die "Can't open $outputfile\n";

&MakePage;

close (OUT);

}

##

Level 1

##

sub MakePage

{

print OUT <<ENDMARKER;

<HTML>

<BODY>

<HEAD><TITLE>$FullName{$user}'s Home Page</TITLE></HEAD>

<H1>$FullName{$user}'s Home Page</H1>

Hi welcome to my home page. In case you hadn't

got it yet my name is: $FullName{$user}...

I study at Høgskolen i Oslo.

100 The unix programming environment

</BODY>

</HTML>

ENDMARKER

}

7.14 Other supported functions

Perl has very many functions which come directly from the C library. To give a taster,

a few are listed here. The Perl book contains a comprehensive description of these.

Fork The standard UNIX fork command for spawning new processes.

Sockets Support for network socket communication.

Directories

Directory opening and handling routines.

Databases Reading from the password �les and the host databases is supported through

the standard C functions `getpasswdbyname' etc. dressed up to look like Perl.

Crypt The password encryption function.

Regexp Regular expressions and pattern matching, search and replace functions as in

`sed'.

Operators Perl has the full set of C's logical operators.

File testing

Tests from the shell like `if (-f file)'.

Here are some of the most frequently used functions

chmod Change the �le mode of a �le. e.g. chmod 755,�lename

chdir Change the current working directory. e.g. chdir /etc

stat Get info about permissions, ownership and type of a �le.

open Open a �le for reading, `>' writing, `|' as a pipe.

close Close an open �le handle.

system Execute a shell command as a child process. e.g. system "ls";

split Split a string variable into an array of elements, by searching for a special

character (space or `:' etc.) e.g. @array=split(":",$string).

rename Rename a �le. e.g. rename old name new-name

mkdir Make a new directory. mkdir newdir

shift Read the �rst element of an array and delete it, shifting all the array elements

down by one. (e.g. $first=shift(@array);).

chop Chops o� the last character of a string. Often used for deleting the end-of-line

character when reading from a �le.

Chapter 7: Perl 101

oct Interprets a number as octal (converts to decimal). e.g. $decimal = oct(755);

kill Send a kill signal to a list of processes. e.g. kill -9, pid1,pid2...

You should explore Perl's possibilities yourself. Perl is a good alternative to the shell which

has much of the power of C and is therefore ideal for simple and more complex system

programming tasks. If you intend to be a system administrator for UNIX systems, you

could do much worse than to read the Perl book and learn Perl inside out.

7.15 Summary

The Practical Extraction and Report Language is a powerful tool which goes beyond

shell programming, but which retains much of the immediateness of shell programming in

a more formal programming environment.

The success of Perl has led many programmers to use it exclusively. In the next section,

I would like to argue that programming directly in C is not much harder. In fact it has

advantages in the long run. The power of Perl is that it is as immediate as shell program-

ming. If you are inexperienced, Perl is a little easier than C because many features are

ready programmed into the language, but with time one also builds up a repertoire of C

functions which can do the same tricks.

7.16 Exercises

1. Write a progam which prints out all of its arguments alphabetically together with the

�rst and the last, and the number of arguments.

2. Write a program which prints out the pathname of the home directory for a given user.

The user's login name should be given as an argument.

3. Write a program called `search-replace' which looks for a given string in a list of �les

and replaces it with a new string. You should be able to specify a list of �les us-

ing ordinary unix wildcards. e.g. `search-replace search-string replace-string

*.text'. This is a dangerous operation! What if the user types the strings incorrectly?

How can you may the program safer?

4. Write a program which opens a pipe from `ps' and computes the total cpu-time used by

each user. Print the results in order of maximum to minimum. Hint: use an associated

array to store the information.

5. Write a program which forks and goes into the background. Make the program send

you mail when some other user of your choice logs in. Use sleep to check only every

few minutes.

6. Open a pipe from `find' and collect statistics over how many �les there are in all of

your sub-directories.

7.17 Project

Write a program which checks the `sanity' of your UNIX system.

1. Check that the password �le /etc/passwd is not writable by general users.

2. Check that the processes `cron' and `sendmail' are running.

102 The unix programming environment

3. Check that, if the �le `/etc/exports' or `/etc/dfs/dfstab' exists, the nfsd daemon

is running.

4. Check that if the �lesystem table `/etc/fstab' (or its equivalent on non-BSD systems)

contains NFS mounted �lesystems, the `biod' or `nfsiod' daemon is running.

5. Check that the �le `/etc/resolv.conf' contains the correct domain name. It may or

may not be the same as that returned by the shell command `domainname'. If it is

not the same, you should print the message `NIS domain has di�erent name to DNS

domain'.

Chapter 8: WWW and CGI programming 103

8 WWW and CGI programming

CGI stands for the Common Gateway Interface. It is the name given to scripts which

can be executed from within pages of the world wide web. Although it is possible to use any

language in CGI programs (hence the word `common'), the usual choice is Perl, because of

the ease with which Perl can handle text.

The CGI interface is pretty unintelligent, in order to be as general as possible, so we

need to do a bit of work in order to make scripts work.

8.1 Permissions

The key thing about the WWW which often causes a lot of confusion is that the W3

service runs with a user ID of `nobody'. The purpose of this is to ensure that nobody has

the right to read or write �les unless they are opened very explicitly by the user who owns

them.

In order for �les to be readable on the WWW, they must have �le mode `644' and they

must lie in a directory which has mode `755'. In order for a CGI program to be executable,

it must have permission `755' and in order for such a program to write to a �le in a user's

directory, it must be possible for the �le to be created (if necessary) and everyone must be

able to write to it. That means that �les which are written to by the WWW must have

mode `666' and must either exist already or lie in a directory with permission `777'1.

8.2 Protocols

CGI script programs communicate with W3 browsers using a very simple protocol. It

goes like this:

� A web page sends data to a script using the `forms' interface. Those data are concate-

nated into a single line. The data in separate �elds of a form are separated by `&' signs.

New lines are replaced by the text `%0D%0A', which is the DOS ASCII representation

of a newline, and spaces are replaced by `+' symbols.

� A CGI script reads this single line of text on the standard input.

� The CGI script replies to the web browser. The �rst line of the reply must be a line

which is tells the browser what mime-type the data are sent in. Usually, a CGI script

replies in HTML code, in which case the �rst line in the reply must be:

Content-type: text/html

This must be followed by a blank line.

8.3 HTML coding of forms

To start a CGI program from a web page we use a form which is a part of the HTML

code enclosed with the parentheses

1 You could also set the sticky bit `1777' in order to prevent malicious users from deleting

your �le.

104 The unix programming environment

<FORM method="POST" ACTION="/cgi-script-alias/program.pl">

...

</FORM>

The method `post' means that the data which get typed into this form will be piped into

the CGI program via its standard input. The `action' speci�es which program you want to

start. Note that you cannot simply use the absolute path of the �le, for security reasons.

You must use something called a `script alias' to tell the web browser where to �nd the

program. If you do not have a script alias de�ned for you personally, then you need to get

one from your system administrator. By using a script alias, no one from outside your site

can see where your �les are located, only that you have a `cgi-bin' area somewhere on your

system.

Within these parentheses, you can arrange to collect di�erent kinds of input. The sim-

plest kind of input is just a button which starts the CGI program. This has the form

<INPUT TYPE="submit" VALUE="Start my program">

This code creates a button. When you click on it the program in your `action' string gets

started. More generally, you will want to create input boxes where you can type in data.

To create a single line input �eld, you use the following syntax:

<INPUT NAME="variable-name" SIZE=40>

This creates a single line text �eld of width 40 characters. This is not the limit on the

length of the string which can be typed into the �eld, only a limit on the amount which

is visible at any time. It is for visual formatting only. The NAME �eld is used to identify

the data in the CGI script. The string you enter here will be sent to the CGI script in the

form `variable-name=value of input...'. Another type of input is a text area. This is a

larger box where one can type in text on several lines. The syntax is:

<TEXTAREA NAME="variable-name" ROW=50 COLS=50>

which means: create a text area of �fty rows by �fty columns with a prompt to the left of

the box. Again, the size has only to do with the visual formatting, not to do with limits on

the amount of text which can be entered.

As an example, let's create a WWW page with a complete form which can be used to

make a guest book, or order form.

<HTML>

<HEAD>

<TITLE>Example form</TITLE>

<!-- Comment: Mark Burgess, 27-Jan-1997 -->

<LINK REV="made" HREF="mailto:mark@iu.hioslo.no">

</HEAD>

<BODY>

<CENTER><H1>Write in my guest book...</H1></CENTER>

<HR>

Chapter 8: WWW and CGI programming 105

<CENTER><H2>Please leave a comment using the form below.</H2><P>

<FORM method="POST" ACTION="/cgi-bin-mark/comment.pl">

Your Name/e-mail: <INPUT NAME="variable1" SIZE=40>

<P>

<TEXTAREA NAME="variable2" cols=50 rows=8></TEXTAREA>

<P>

<INPUT TYPE=submit VALUE="Add message to book">

<INPUT TYPE=reset VALUE="Clear message">

</FORM>

<P>

</BODY>

</HTML>

The reset button clears the form. When the submit button is pressed, the CGI program

is activated.

8.4 Perl and the web

8.4.1 Interpreting data from forms

To interpret and respond to the data in a form, we must write a program which satsi�es

the protocol above, See Section 8.2 [Protocols], page 103. We use perl as a script langauge.

The simplest valid CGI script is the following:

#!/local/bin/perl

#

Reply with proper protocol

#

print "Content-type: text/html\n\n";

#

Get the data from the form ...

#

$input = <STDIN>;

#

... and echo them back

#

106 The unix programming environment

print $input, "\n Done! \n";

Although rather banal, this script is a useful starting point for CGI programming, because

it shows you just how the input arrives at the script from the HTML form. The data arrive

all in a single, enormously long line, full of funny characters. The �rst job of any script is

to decode this line.

Before looking at how to decode the data, we should make an important point about the

protocol line. If a web browser does not get this `Content-type' line from the CGI script it

returns with an error:

500 Server Error

The server encountered an internal error or misconfiguration and was

unable to complete your request.

Please contact the server administrator, and inform them of the time

the error occurred, and anything you might have done that may have

caused the error.

Error: HTTPd: malformed header from script www/cgi-bin/comment.pl

Before �nishing your CGI script, you will probably ecounter this error several times. A

common reason for getting the error is a syntax error in your script. If your program

contains an error, the �rst thing a browser gets in return is not the `Content-type' line,

but an error message. The browser does not pass on this error message, it just prints the

uninformative message above.

If you can get the above script to work, then you are ready to decode the data which

are sent to the script. The �rst thing is to use perl to split the long line into an array of

lines, by splitting on `&'. We can also convert all of the `+' symbols back into spaces. The

script now looks like this:

#!/local/bin/perl

#

Reply with proper protocol

#

print "Content-type: text/html\n\n";

#

Get the data from the form ...

#

$input = <STDIN>;

#

... and echo them back

Chapter 8: WWW and CGI programming 107

#

print "$input\n\n\n";

$input =~ s/\+/ /g;

#

Now split the lines and convert

#

@array = split('&',$input);

foreach $var (@array)

{

print "$var\n";

}

print "Done! \n";

We now have a series of elements in our array. The output from this script is something

like this:

variable1=Mark+Burgess&variable2=%0D%0AI+just+called+to+say+ (wrap)

....%0D%0A...hey+pig%2C+nothing%27s+working+out+the+way+I+planned

variable1=Mark Burgess variable2=%0D%0AI just called to say (wrap)

....%0D%0A...hey pig%2Cnothing%27s working out the way I planned Done!

As you can see, all control characters are converted into the form `%XX'. We should now try

to do something with these. Since we are usually not interested in keeping new lines, or

any other control codes, we can simply null-out these with a line of the form

$input =~ s/%..//g;

The regular expression `%..' matches anything beginning with a percent symbol followed by

two characters. The resulting output is then free of these symbols. We can then separate

the variable contents from their names by splitting the input. Here is the complete code:

#!/local/bin/perl

#

Reply with proper protocol

#

print "Content-type: text/html\n\n";

#

Get the data from the form ...

#

108 The unix programming environment

$input = <STDIN>;

#

... and echo them back

#

print "$input\n\n\n";

$input =~ s/%..//g;

$input =~ s/\+/ /g;

@array = split('&',$input);

foreach $var (@array)

{

print "$var
";

}

print "<hr>\n";

($name,$variable1) = split("variable1=",$array[0]);

($name,$variable2) = split("variable2=",$array[1]);

print "
var1 = $variable1
";

print "
var2 = $variable2
";

print "
Done! \n";

and the output
� �

variable1=Mark+Burgess&variable2=%0D%0AI+just+called+to+say (wrap)

+....%0D%0A...hey+pig%2C+nothing%27s+working+out+the+way+I+planned

variable1=Mark Burgess

variable2=I just called to sayhey pig nothings working (wrap)

out the way I planned

var1 = Mark Burgess

var2 = I just called to sayhey pig nothings working out (wrap)

the way I planned

Done!

 	

Chapter 8: WWW and CGI programming 109

8.4.2 A complete guestbook example in perl

Let us now use this technique to develop a guest book aplication. Based on the code

above, analyze the following code.

#!/local/bin/perl

##

#

Guest book

#

##

$guestbook_page = "/iu/nexus/ud/mark/www/tmp/cfguest.html";

$tmp_page = "/iu/nexus/ud/mark/www/tmp/guests.tmp";

$remote_host = $ENV{"REMOTE_HOST"};

print "Content-type: text/html\n\n";

print "
<hr>
\n";

print "Thank you for submitting your comment!

\n";

print "best wishes,

";

print "-Mark

";

print "Return to menu\n";

$input = <STDIN>;

$input =~ s/%..//g;

$input =~ s/\+/ /g;

@array = split('&',$input);

($skip,$name) = split("var1=",$array[0]);

($skip,$message) = split("var2=",$array[1]);

if (! open (PAGE, $guestbook_page))

{

print "Content-type: text/html\n\n";

print "couldn't open guestbook page file!";

}

if (! open (TMP, "+>$tmp_page"))

{

print "Content-type: text/html\n\n";

print "couldn't open temporary output file!";

}

while ($line = <PAGE>)

{

110 The unix programming environment

if ($line =~ /<h3>Number of entries: (..)/)

{

$entry_no = $1;

$entry_no++;

$line = "<h3>Number of entries: $entry_no </h3>\n";

}

if ($line =~ /<!-- LAST ENTRY -->/)

{

$date = `date +"%A, %b %d %Y"`;

print TMP "Entry $date from host: $remote_host\n<p>\n";

print TMP "From: $name\n<p>\n";

print TMP $message;

print TMP "\n<hr>\n";

}

print TMP "$line";

}

close PAGE;

close TMP;

if (! rename ($tmp_page, $guestbook_page))

{

print "Oops! Rename operation failed!\n";

}

chmod (0600, $guestbook_page);

This script works by reading through the old guest book �le, opening a new copy of the

guest book �le and appending a new messages at the end. The end of the message section

(not counting the `</HTML>' tags) is marked by a comment line.

<!-- LAST ENTRY -->

Note that a provisional guest book �le has to exist in the �rst place. The script writes to

a new �le and then swaps the new �le for the old one. The guest book �le looks something

like this:

<html><head>

<title>Comments</title>

</head>

<body>

<h1>My guest book</h1>

Entry no. Wednesday, Feb 28 1996

from host: dax

<p>

From: Mark.Burgess@iu.hioslo.no

<p>

Just to start the ball rolling....

Chapter 8: WWW and CGI programming 111

<hr>

Entry no. Tuesday, Mar 26 1996

from host: enterprise.subspace.net

<p>

From: spock@enterprise

<p>

Registering a form of energy never before encountered.

<!-- LAST ENTRY -->

</body> <address>Mark

Burgess - Mark.Burgess@iu.hioslo.no</addre ss> </html>

The directory in which this �le lies needs to be writable to the user nobody (the WWW

user) and the �les within need to be deletable by nobody but no one else. Some users

try to make guest book scripts setuid-themselves in order to overcome the problem that

httpd runs with uid nobody, but this opens many security issues. In short it is asking for

trouble. Unfortunately an ordinary user cannot use chown in order to give access only to the

WWW user nobody, so this approach needs the cooperation of the system administrator.

Nevertheless this is the most secure approach. Try to work through this example step for

step.

8.5 PHP and the web

The PHP 3 language makes the whole business of web programming rather simpler

than perl. It hides the business of translating variables from forms into new variables in

a CGI program and it even allows you to embed active code into you HTML pages. PHP

has special support for querying data in an SQL database like MySQL or Oracle. PHP

documentation lives at http://www.php.net.

8.5.1 Embedded PHP

PHP code can be embedded inside HTML pages provided your WWW server is con�g-

urered with PHP support. PHP code lives inside a tag with the general form

<?php code... ?>

For example, we could use this to import one �le into another and print out a table of

numbers:

<html>

<body>

<?php

112 The unix programming environment

include "file.html"

for ($i = 0; $i < 10; $i++)

{

print "Counting $i
";

}

?>

</body>

</html>

This makes it easy to generate WWW pages with a �xed visual layout:

<?php

#

Standard layout

#

Set $title, $comment and $contents

##

print "<body>\n";

print "";

print "<h1>"$title</h1>";

print "$comment";

print "<blockquote>\n";

include $contents;

print ("</blockquote>\n");

print ("</body>\n");

print ("</html>\n");

Variables are easily set by calling PHP code in the form of a CGI program from a form.

8.5.2 PHP and forms

PHP is particularly good at dealing with forms, as a CGI scripting langauge. Consider

the following form:

<html>

<body>

<form action="/cgi-bin-scriptalias/spititout.php" method="post">

Name: <input type="text" name="personal[name]">

Email: <input type="text" name="personal[email]">

Preferred language:

<select multiple name="language[]">

Chapter 8: WWW and CGI programming 113

<option value="English">English

<option value="Norwegian">Norwegian

<option value="Gobbledigook">Gobbledigook

</select>

<input type=image src="image.gif" name="sub">

</form>

</body>

</html>

This produces a page into which one types a name and email address and chooses a

language from a list of three possible choices. When the user clicks on a button marked by

the �le `image.gif' the form is posted. Here is a program which unravels the data sent to

the CGI program:

#!/local/bin/php

<?php

#

A CGI program which handles a form

Variables a translated automatically

#

$title = "This page title";

$comment = "This pages talks about the following.....";

##

echo "<body>";

echo "<h1>$title</h1>";

echo "$comment";

echo "<blockquote>\n";

###

echo "Your name is $personal[name]

";

echo "Your email is $personal[email]

";

echo "Language options: ";

echo "<table> ";

for ($i = 0; strlen($language[$i]) > 0; $i++)

{

echo "<tr><td bgcolor=#ff0000>Variable language[$i] = $language[$i]</td></tr>";

}

if ($language[0] == "Norwegian")

{

echo "Hei alle sammen<p>";

114 The unix programming environment

}

else

{

echo "Greetings everyone, this page will be in English<p>";

}

echo "</table> ";

###

echo ("</blockquote>\n");

echo ("</body>\n");

echo ("</html>\n");

?>

Chapter 9: C programming 115

9 C programming

This section is not meant to teach you C. It is a guide to using C in UNIX and it is

assumed that you have a working knowledge of the language. See the GNU C-Tutorial for

an introduction to basics.

9.1 Shell or C?

In the preceding chapters we have been looking at ways to get simple programming

tasks done. The immediateness of the script languages is a great advantage when we just

want to get a job done as quickly as possible. Scripts lend themselves to simple system

administration tasks like �le processing, but they do not easily lend themselves to more

serious programs.

Although some system administrators have grown to the idea that shell programming

is easier, I would argue that this is not really true. First of all, most of the UNIX shell

commands are just wrapper programs for C function calls. Why use the wrapper when you

can use the real thing? Secondly, the C function calls return data in pointers and structures

which are very easy to manipulate, whereas piping the output of shell programs into others

can be a very messy and awkward way of working. Here are some of the reasons why we

also need a more traditional programming language like C.

1. The shell languages do not allow us to create an acceptable user-interface, like X-

windows, or the curses (cursor manipulation) library. They are mainly intended for

�le-processing. (Though recently the Tk library has provided a way of creating user

interfaces in Tcl and Perl.)

2. Shell commands read their input line-by-line. Not all input is generated in this simple

way { we also need to be able to read through lines i.e. the concept of a data stream.

3. More advanced data structures are needed for most applications, such as linked lists

and binary trees, acyclic graphs etc.

4. Compilers help to sort out simple typographical and logical errors by compile-time

checking source code.

5. Compiled code is faster than interpreted code.

6. Many tools have been written to help in the programming of C code (dbx, lex, yacc

etc.).

9.2 C program structure

9.2.1 The form of a C program

A C program consists of a set of function, beginning with the main program:

main () /* This is a comment */

{

Commands ...

116 The unix programming environment

}

The source code of a C program can be divided into several text �les. C compiles all

functions separately; the linker ld joins them all up at the end. This means that we can

plan out a strategy for writing large programs in a clear and e�cient manner.

NOTE: C++ style comments `//...' are not allowed by most C compilers.

9.2.2 Macros and declarations

Most Unix systems now have ANSI C compatible compilers, but this has not always

been the case. Most UNIX programs written in a version of C which is older than the ANSI

standard, so you will need an appreciation of old Kernighan and Ritchie C conventions for

C programming. See for example my C book.

An obvious di�erence between ANSI C and K&R C is that the C++ additions to the

language are not included. Here are some useful points to remember.

� K&R C does not allow `const' data, it uses the C preprocessor with `#define' instead.

i.e. intead of

const int blah = 1;

use

#define blah 1

Remember that the hash symbol `#' must be the �rst character on a line under UNIX.

� K&R C doesn't use function prototypes or declarations of the form:

void function (char *string, int a, int b)

{

}

Instead one writes:

void function (string, a, b)

char *string;

int a,b;

{

}

9.2.3 Several �les

Most unix programs are very large and are split up into many �les. Remember, when

you split up programs into several �les, you must declare variables as `extern' in �le A if

Chapter 9: C programming 117

they are really declared in �le B. in which you want to use them. This tells the compiler

that it should not try to create local storage for the variable, because this was already done

in another �le.

9.3 A note about UNIX system calls and standards

Most of the system calls in UNIX return data in the form of `struct' variables. Some-

times these are structures used by the operating system itself { in other cases they are just

put together so that programmers can handle a packet of data in a convenient way.

If in doubt, you can �nd the de�nitions of these structures in the relevant include �les

under `/usr/include'.

Since UNIX comes in many
avours the system calls are not always compatible and may

have di�erent options and arguments. Because of this there is a number of standardizing

organizations for UNIX. One of them is POSIX which is an organization run by the major

UNIX vendors. Programs written for UNIX are now expected to be POSIX compliant. This

is not something you need to think about at the level of this course, but you should certainly

remember that there exist programming standards and that these should be adhered to.

The aim is to work towards a single standard UNIX.

9.4 Compiling: `cc', `ld' and `a.out'

The C compiler on the unix system is traditionally called `cc' and has always been a

traditional part of every Unix environment. Recently several Unix vendors have stopped

including the C compiler as a part of their operating systems and instead sell a compiler

separately. Fortunately there is a public domain Free Software version of the compiler called

`gcc' (the GNU C compiler). We shall use this in all the examples.

To compile a program consisting of several �les of code, we �rst compile all of the separate

pieces without trying to link them. There are therefore two stages: �rst we turn `.c' �les

into `.o' �les. This compiles code but does not �x any address references. Then we link all

`.o' �les into the �nal executable, including any libraries which are used.

Let's suppose we have �les `a.c', `b.c' and `c.c'. We write:

gcc -c a.c b.c c.c

This creates �les `a.o', `b.o' and `c.o'. Next we link them into one �le called `myprog'.

gcc -o myprog a.o b.o c.o

If the naming option `-o myprog' is not used, the link `ld' uses the default name a.out for

the executable �le.

9.4.1 Libraries and `LD_LIBRARY_PATH'

The resulting �le is called `myprog' and includes references only to the standard li-

brary `libc'. If we wish to link in the math library `libm' or the cursor movement library

`libcurses' { or in general, a library called `libBLAH' , we need to use the `-l' directive.

118 The unix programming environment

gcc -o myprog files.o -lm -lcurses -lBLAH

The compiler looks for a suitable library in all of the directories listed in the environment

variable `LD_LIBRARY_PATH'. Alternatively we can add a directory to the search path by

using the `-L'. option:

gcc -o myprog files.o -L/usr/local/lib -lm -lcurses -lBLAH

9.4.2 Include �les

Normally the compiler looks for include �les only in the directory `/usr/include'. We

can add further paths to search using the `-I' option.

gcc -o myprog file.c -I/usr/local/include -I/usr/local/X11/include

Previously, Unix libraries have been in `a.out' code format, but recent releases of unix

have gone over to a more e�cient and
exible format called ELF (executable and linking

format).

9.4.3 Shared and static libraries

Libraries are collections of C functions which the operating system creators have written

for our convenience. The source code for such a library is just the source for a collection of

functions { there is no main program.

There are two kinds of library used by modern operating systems: archive libraries or

static libraries and shared libraries or dynamical libraries. An archive library has a

name of the form

libname.a

When an archive library is linked to a program, it is appended lock, stock and barrel to the

program code. This uses a lot of disk space and makes the size of the compiled program very

large. Shared libraries (shared objects `so' or shared archives `sa' generally have names of

the form)

libname.so

libname.sa

often with version numbers appended. When a program is linked with a shared library the

code is not appended to the program. Instead pointers to the shared objects are created and

the library is loaded at runtime, thus avoiding the problem of having to store the library

e�ectively multiple times on the disk.

To make an archive library we compile all of the functions we wish to include in the

library

Chapter 9: C programming 119

gcc -c function1.c function2.c ...

and then join the �les using the `ar' command.

ar rcv libMYLIB.a function1.o

ar rcv libMYLIB.a function2.o

To make a shared library one provides an option to the linker program. The exact method

is di�erent in di�erent operating systems, so you should look at the manual page for ld on

your system. Under SunOS 4 we take the object �les `*.o' and run

ld -o libMYLIB.so.1.1 -assert pure-text *.o

Under HPUX, we write

ld -b -o libMYLIB.so.1.1 *.o

With the GNU linker, you write

ld -shared -o libMYLIB.so.1.1 *.o

NOTE: when you add a shared library to the system under SunOS or GNU/Linux

you must run the command `ldconfig', making sure that the path to the library is in-

cluded in `LD_LIBRARY_PATH'. SunOS and GNU/Linux use a cache �le `/etc/ld.so.cache'

to keep current versions of libraries. GNU/Linux also uses a con�guration �le called

`/etc/ld.so.conf'.

9.4.4 Knowing about important paths: directory structure

It is important to understand how the C compiler �nds the �les it needs. We have

already mentioned the `-I' and `-L' options to the compilation command line. In general,

all system include �les can be found in the directory `/usr/include' and subdirectories of

this directory. All system libraries can be found in `/usr/lib'.

Many packages build their own libraries and keep the relevant �les in separate directories

so that if the system gets reinstalled, they do not get deleted. This is true for example of

the X-windows system. The include and library �les for this are typically kept in directo-

ries which look something like `/usr/local/X11R5/include' and `/usr/X11R6/lib'. That

means that we need to give all of this information to the compiler. Compiling a program

becomes a complicated task in many cases so we need some kind of script to help us perform

the task. The Unix tool make was designed for this purpose.

9.5 Make

Nowadays compilers are often sold with fancy user environments driven by menus which

make it easier to compile programs. Unix has similar environments but all of them use

120 The unix programming environment

shell-based command line compilation beneath the surface. That is because UNIX pro-

grammers are used to writing large and complex programs which occupy many directories

and subdirectories. Each directory has to be adapted or con�gured to �t the particular

avour of Unix system it is being compiled upon. Interactive user environments are very

poor at performing this kind of service. UNIX solves the problem of compiling enormous

trees of software (such as the unix system itself!) by using a compilation language called

`make'. Such language �les can be generated automatically by scripts, allowing very complex

programs to con�gure and compile themselves from a single control script.

9.5.1 Compiling large projects

Typing lines like

cc -c file1.c file2.c ...

cc -o target file1.o

repeatedly to compile a complicated program can be a real nuisance. One possibility

would therefore be to keep all the commands in a script. This could waste a lot of time

though. Suppose you are working on a big project which consists of many lines of source code

{ but are editing only one �le. You really only want to recompile the �le you are working

on and then relink the resulting object �le with all of the other object �les. Recompiling

the other �les which hadn't changed would be a waste of time. But that would mean that

you would have to change the script each time you change what you need to compile.

A better solution is to use the `make' command. `make' was designed for precisely this

purpose. To use `make', we create a �le called `Makefile' in the same directory as our

program. `make' is a quite general program for building software. It is not speci�cally tied

to the C programming language| it can be used in any programming language.

A `make' con�guration �le, called a `Makefile', contains rules which describe how to

compile or build all of the pieces of a program. For example, even without telling it speci�-

cally, make knows that in order to go from `prog.c' to `prog.o' the command `cc -c prog.c'

must be executed. A Make�le works by making such associations. The Make�le contains a

list of all of the �les which compose the program and rules as to how to get to the �nished

product from the source.

The idea is that, to compile a program, we just have to type make. `make' then reads

the Make�le and compiles all of the parts which need compiling. It does not recompile �les

which have not changed since the last compilation! How does it do this? `make' works by

comparing the time-stamp on the �le it needs to create with the time-stamp on the �le

which is to be compiled. If the compiled version exists and is newer than its source then

the source does not need to be recompiled.

To make this idea work in practice, `make' has to know how to go through the steps of

compiling a program. Some default rules are de�ned in a global con�guration �le, e.g.

/usr/include/make/default.mk

Let's consider an example of what happens for the the three �les `a.c', `b.c' and `c.c' in

the example above { and let's not worry about what the Make�le looks like yet.

Chapter 9: C programming 121

The �rst time we compile, only the `.c' �les exist. When we type `make', the program

looks at its rules and �nds that it has to make a �le called `myprog'. To make this it needs

to execute the command

gcc -o myprog a.o b.o c.o

So it looks for `a.o' etc and doesn't �nd them. It now goes to a kind of subroutine and looks

to see if it has any rules for making �les called `.o' and it discovers that these are made by

compiling with the `gcc -c' option. Since the �les do not exist, it does this. Now the �les

`a.o b.o c.o' exist and it jumps back to the original problem of trying to make `myprog'. All

the �les it needs now exist and so it executes the command and builds `myprog'.

If we now edit `a.c', and type `make' once again { it goes through the same procedure as

before but now it �nds all of the �les. So it compares the dates on the �les { if the source

is newer than the result, it recompiles.

By using this recursive method, `make' only compiles those parts of a program which

need compiling.

9.5.2 Make�les

To write a Make�le, we have to tell `make' about dependencies. The dependencies of a

�le are all of those �les which are required to build it. Thus, the dependencies of `myprog'

are `a.o', `b.o' and `c.o'. The dependencies of `a.o' are simply `a.c', the dependencies of `b.o'

are `b.c' and so on.

A Make�le consists of rules of the form:

target : dependencies

hTABi rule;

The target is the thing we want to build, the dependenices are like subroutines to be executed

�rst if they do not exist. Finally the rule is to be executed if all if the dependenices exist;

it takes the dependencies and turns them into the target. There are two important things

to remember:

� The �le names must start on the �rst character of a line.

� There must be a hTABi character at the beginning of every rule or action. If there are

spaces instead of tabs, or no tab at all, `make' will signal an error. This bizarre feature

can cause a lot of confusion.

Let's look at an example Make�le for a program which consists of two course �les `main.c'

and `other.c' and which makes use of a library called `libdb' which lies in the directory

`/usr/local/lib'. Our aim is to build a program called database:

#

Simple Makefile for `database'

#

First define a macro

122 The unix programming environment

OBJ = main.o other.o

CC = gcc

CFLAGS = -I/usr/local/include

LDFLAGS = -L/usr/local/lib -ldb

INSTALLDIR = /usr/local/bin

#

Rules start here. Note that the $@ variable becomes the name of the

executable file. In this case it is taken from the ${OBJ} variable

#

database: ${OBJ}

${CC} -o $@ ${OBJ} ${LDFLAGS}

#

If a header file changes, normally we need to recompile everything.

There is no way that make can know this unless we write a rule which

forces it to rebuild all .o files if the header file changes...

#

${OBJ}: ${HEADERS}

#

As well as special rules for special files we can also define a

"suffix rule". This is a rule which tells us how to build all files

of a certain type. Here is a rule to get .o files from .c files.

The $< variable is like $? but is only used in suffix rules.

#

.c.o:

${CC} -c ${CFLAGS} $<

###

Clean up

###

#

Make can also perform ordinary shell command jobs

"make tidy" here performs a cleanup operation

#

clean:

rm -f ${OBJ}

rm -f y.tab.c lex.yy.c y.tab.h

rm -f y.tab lex.yy

rm -f *% *~ *.o

rm -f mconfig.tab.c mconfig.tab.h a.out

Chapter 9: C programming 123

rm -f man.dvi man.aux man.log man.toc

rm -f cfengine.tar.gz cfengine.tar cfengine.tar.Z

make tidy

rm -f cfengine

install: ${INSTALLDIR}/database

cp database ${INSTALLDIR}/database

The Make�le above can be invoked in several ways.

make

make database

make clean

make install

If we simple type `make' i.e. the �rst of these choices, `make' takes the �rst of the rules it

�nds as the object to build. In this case the rule is `database', so the �rst two forms above

are equivalent.

On the other hand, if we type

make clean

then execution starts at the rule for `clean', which is normally used to remove all �les except

the original source code. Make `install' causes the compiled program to be installed at its

intended destination.

`make' uses some special variables (which resemble the special variables used in Perl {

but don't confuse them). The most useful one is `$@' which represents the current target {

or the object which `make' would like to compile. i.e. as `make' checks each �le it would like

to compile, `$@' is set to the current �lename.

$@ This evaluates to the current target i.e. the name of the object you are currently

trying to build. It is normal to use this as the �nal name of the program when

compiling

$? This is used only outside of su�x rules and means the name of all the �les

which must be compiled in order to build the current target.

target: file1.o file2.o

hTABi cc -o $@ $?

$< This is only used in su�x rules. It has the same meaning as `$?' but only in

su�x rules. It stands for the pre-requisite, or the �le which must be compiled

in order to make a given object.

Note that, because `make' has some default rules de�ned in its con�guration �le, a single-

�le C program can be compiled very easily by typing

make filename.c

This is equivalent to

cc -c filename.c

cc -o filename filename.o

124 The unix programming environment

9.5.3 New su�x rules for C++

Standard rules for C++ are not often built into UNIX systems at the time of writing, but

we can create them in our own Make�les very easily. Here we shall use the GNU compiler

g++'s conventions for C++ �les. Here is a sample Make�le for using C++. Note that the

`.SUFFIXES' command must be used to declare new endings or �le extensions.

##

#

This is the Makefile for g++

#

##

OBJ = cpp-prog.o X.o Y.o Z.o

CCPLUS = g++

.SUFFIXES: .C .o .h

#

Program Rules

#

filesys: ${OBJ}

$(CCPLUS) -o filesys $(OBJ)

#

Extra dependencies on the header file

(if the header file changes, we need to rebuild *.o)

#

cpp-prog.o: filesys.h

X.o: filesys.h

Y.o: filesys.h

Z.o: filesys.h

#

Suffix rules

#

.C.o:

$(CCPLUS) -c $<

The general rule here tells make that a `.o' �le can be created from a `.C' �le by executing

the command `$(CCPLUS) -c'. (This is identical to the C case, exept for the name of the

compiler). The extra dependencies tell make that, if we change the header �le `filesys.h',

then we must recompile all the �les which read in `filesys.h', since this could a�ect all

Chapter 9: C programming 125

of these. Finally, the highest level rule says that to make `filesys' from the `.o' �les, we

have to run `$(CCPLUS) -o filesys *.o'.

9.6 The argv, argc and envp paramters

When we write C programs which reads command line arguments, they are fed to us as

an array of strings called the argument vector. The mechanisms for the C-shell and Perl

are derived from the C argument vector. To read in the command line, we write

main (argc,argv,envp)

int argc;

char *argv[], *envp[];

{

printf ("The first argument was %s\n",argv[1]);

}

Argument zero is the name of the program itself and `argv[argc-1]' is the last argument.

The above de�nitions are in Kernighan and Ritchie C style. In ANSI C, the arguments can

be declared using prototype:

main (int argc, char **argv)

{

}

The array of strings `envp[]' is a list of values of the environment variables of the system,

formatted by

NAME=value

This gives C programmers access to the shell's global environment.

9.7 Environment variables in C

In addition to the `envp' vector, it is possible to access the environment variables through

the call `getenv()'. This is used as follows; suppose we want to access the shell environment

variable `$HOME'.

char *string;

string = getenv("HOME");

`string' is now a pointer to static but public data. You should not use `string' as if it

were you're own property because it will be used again by the system. Copy it's contents

to another string before using the data.

char buffer[500];

strcpy (buffer,string);

126 The unix programming environment

9.8 Files and directories

All of the regular C functions from the standard library are available to Unix program-

mers. The standard functions only address the issue of reading and writing to �les however,

they do not deal with operating system speci�c attributes such as �le permissions and �le

types. Nor is there a mechanisms for obtaining lists of �les within a directory. The reason

for these omissions is that they are operating system dependent. To �nd out about these

other attributes POSIX describes some standard Unix system calls.

9.8.1 opendir, readdir

Files and directories are handled by functions de�ned in the header �le `dirent.h'. In

earlier UNIX systems the �le `dir.h' was used { and the de�nitions were slightly di�erent,

but not much. To get a list of �les in a directory we must open the directory and read

from it { just like a �le. (A directory is just a �le which contains data on its entries). The

commands are

opendir

closedir

readdir

See the manual pages for dirent. These functions return pointers to a dirent structure

which is de�ned in the �le `/usr/include/dirent.h'. Here is an example ls command

which lists the contents of the directory `/etc'. This header de�nes a structure

struct dirent

{

off_t d_off; /* offset of next disk dir entry */

unsigned long d_fileno; /* file number of entry */

unsigned short d_reclen; /* length of this record */

unsigned short d_namlen; /* length of string in d_name */

char d_name[255+1]; /* name (up to MAXNAMLEN + 1) */

};

which can be used to obtain information from the directory nodes.

#include <stdio.h>

#include <dirent.h>

main ()

{ DIR *dirh;

struct dirent *dirp;

static char mydir[20] = "/etc";

if ((dirh = opendir(mydir)) == NULL)

{

perror("opendir");

return;

}

Chapter 9: C programming 127

for (dirp = readdir(dirh); dirp != NULL; dirp = readdir(dirh))

{

printf("Got dir entry: %s\n",dirp->d_name);

}

closedir(dirh);

}

Notice that reading from a directory is like reading from a �le with fgets(), but the entries

are �lenames rather than lines of text.

9.8.2 stat()

To determine the �le properties or statistics we use the function call `stat()' or its

corollory `lstat()'. Both these functions �nd out information about �les (permissions,

owner, �letype etc). The only di�erence between them is the way in which they treat

symbolic links. If `stat' is used on a symbolic link, it stats the �le the link points to rather

than the link itself. If `lstat' is used, the data refer to the link. Thus, to detect a link, we

must use `lstat', See Section 9.8.3 [lstat and readlink], page 127.

The data in the `stat' structure are de�ned in the �le `/usr/include/sys/stat.h'. Here

are the most important structures.

struct stat

{

dev_t st_dev; /* device number*/

ino_t st_ino; /* file inode */

mode_t st_mode; /* permission */

short st_nlink; /* Number of hardlinks to file */

uid_t st_uid; /* user id */

gid_t st_gid; /* group id */

dev_t st_rdev;

off_t st_size; /* size in bytes */

time_t st_atime; /* time file last accessed */

time_t st_mtime; /* time file contents last modified */

time_t st_ctime; /* time last attribute change */

long st_blksize;

long st_blocks;

};

9.8.3 lstat and readlink

The function `stat()' treats symbolic links as though they were the �les they point to.

In other words, if we use `stat()' to read a symbolic link, we end up reading the �le the

link points to and not the link itself| we never see symbolic links. To avoid this problem,

there is a di�erent version of the stat function called `lstat()' which is identical to `stat()'

128 The unix programming environment

except that it treats links as links and not as the �les they point to. This means that we can

test whether a �le is a symbolic link, only if we use `lstat()'. (See the next paragraph.)

Once we have identi�ed a �le to be a symbolic link, we use the `readlink()' function

to obtain the name of the �le the link points to.

#define bufsize 512

char buffer[bufsize];

readlink("/path/to/file",buffer,bufsize);

The result is returned in the string bu�er.

9.9 stat() test macros

As we have already mentioned, the Unix mode bits contain not only information about

what permissions a �le has, but also bits describing the type of �le { whether it is a

directory or a link etc. There are macros de�ned in UNIX to extract this information from

the `st_mode' member of the `stat' structure. They are de�ned in the `stat.h' header�le.

Here are some examples.

#define S_ISBLK(m) /* is block device */

#define S_ISCHR(m) /* is character device */

#define S_ISDIR(m) /* is directory */

#define S_ISFIFO(m) /* is fifo pipe/socket */

#define S_ISREG(m) /* is regular (normal) file */

#define S_ISLNK(m) /* is symbolic link */ /* Not POSIX */

#define S_ISSOCK(m) /* is a lock */

#define S_IRWXU /* rwx, owner */

#define S_IRUSR /* read permission, owner */

#define S_IWUSR /* write permission, owner */

#define S_IXUSR /* execute/search permission, owner */

#define S_IRWXG /* rwx, group */

#define S_IRGRP /* read permission, group */

#define S_IWGRP /* write permission, grougroup */

#define S_IXGRP /* execute/search permission, group */

#define S_IRWXO /* rwx, other */

#define S_IROTH /* read permission, other */

#define S_IWOTH /* write permission, other */

#define S_IXOTH /* execute/search permission, other */

These return true or false when acting on the mode member. Here is an example See

Section 9.9.1 [readdir example], page 129.

struct stat statvar;

Chapter 9: C programming 129

stat("file",&statvar);

/* test return values */

if (S_ISDIR(statvar.st_mode))

{

printf("Is a directory!");

}

9.9.1 Example �ling program

The following example program demonstrates the use of the directory functions in dirent

and the stat function call.

/**/

/* */

/* Reading directories and `statting' files */

/* */

/**/

#include <stdio.h>

#include <dirent.h>

#include <sys/types.h>

#include <sys/stat.h>

#define DIRNAME "/."

#define bufsize 255

/**/

main ()

{ DIR *dirh;

struct dirent *dirp;

struct stat statbuf;

char *pathname[bufsize];

char *linkname[bufsize];

if ((dirh = opendir(DIRNAME)) == NULL)

{

perror("opendir");

exit(1);

}

for (dirp = readdir(dirh); dirp != NULL; dirp = readdir(dirh))

{

if (strcmp(".",dirp->d_name) == 0 || strcmp("..",dirp->d_name) == 0)

130 The unix programming environment

{

continue;

}

if (strcmp("lost+found",dirp->d_name) == 0)

{

continue;

}

sprintf(pathname,"%s/%s",DIRNAME,dirp->d_name);

if (lstat(pathname,&statbuf) == -1) /* see man stat */

{

perror("stat");

continue;

}

if (S_ISREG(statbuf.st_mode))

{

printf("%s is a regular file\n",pathname);

};

if (S_ISDIR(statbuf.st_mode))

{

printf("%s is a directory\n",pathname);

}

if (S_ISLNK(statbuf.st_mode))

{

bzero(linkname,bufsize); /* clear string */

readlink(pathname,linkname,bufsize);

printf("%s is a link to %s\n",pathname,linkname);

}

printf("The mode of %s is %o\n\n",pathname,statbuf.st_mode & 07777);

}

closedir(dirh);

}

9.10 Process control, fork(), exec(), popen() and system

There is a number of ways in which processes can interact with one another and in which

we can control their behaviour. We shall not go into great detail in this course, only provide

examples for reference.

The UNIX `fork()' function is used to create child processes. This is the basis of all

`heavyweight' multitasking under unix. Here is a simple example of fork in which we start

a child process from within a program and wait for it to �nish. Note that the code for the

Chapter 9: C programming 131

parent and the child is is the same �le. The only thing that distinguishes parent from child

is the value returned by the fork function.

When `fork()' is called, it duplicates the entire current process so that two parallel

processes are then running. The only di�erence between these is that the child process (the

copy) gets a return value of zero from `fork()', whereas the parent gets a return value equal

to the process identi�er (pid) of the child. This value can be used by the parent to send

messages or to wait for the child. Here we show a simple example in which the `wait(NULL)'

command is used to wait for the last child spawned by the parent.

/**/

/* */

/* A brief demo of the UNIX process duplicator fork(). */

/* */

/**/

#include <stdio.h>

/***/

main ()

{ int pid, cid;

pid = getpid();

printf ("Fork demo! I am the parent (pid = %d)\n",pid);

if (! fork())

{

cid = getpid();

printf ("I am the child (cid = %d) of (pid=%d)\n",cid,pid);

ChildProcess();

exit(0);

}

printf("Parent waiting here for the child...\n");

wait(NULL);

printf("Child finished, parent quitting too!\n");

}

/**/

ChildProcess()

{ int i;

132 The unix programming environment

for (i = 0; i < 10; i++)

{

printf ("%d...\n",i);

sleep(1);

}

}

Another possibility is that we might want to execute a program and wait to �nd out

what the result of the program is before continuing. There are two ways to do this. The

�rst is a variation on the theme above and uses fork().

Let's create a function which runs a shell command from within a C program, and

determines its return value. We make the result a boolean (integer) value, so that the

function returns `true' if the shell command exits normally, See Section 6.6 [Return codes],

page 66.

if (ShellCommandReturnsZero(shell-command))

{

printf ("Command %s went ok\n",shell-command);

}

To do this we �rst have to fork a new process and then use one of the exec commands to

load a new code image on top of the new process. shell commands from C This sounds

complicated, but it is necessary because of the way unix handles processes. If we had no use

for the return value, we could simply execute a shell command using the system("shell

command") function, (which does all this for us) but when system() exits, we can only tell

if the command was executed successfully or unsuccessfully|we learn nothing about what

actually failed (the shell or command which was executed under the shell?) If we require

detailed information about what happened to the child process then we need to do the

following.

#include <sys/types.h>

#include <sys/wait.h>

/* Send complete command as a string */

/* including all arguments */

ShellCommandReturnsZero(comm)

char *comm;

{ int status, i, argc;

pid_t pid;

char arg[maxshellargs][bufsize];

char **argv;

/* Build argument array for execv call*/

for (i = 0; i < maxshellargs; i++)

Chapter 9: C programming 133

{

bzero (arg[i],bufsize);

}

argc = SplitCommand(comm,arg);

if ((pid = fork()) < 0)

{

FatalError("Failed to fork new process");

}

else if (pid == 0) /* child */

{

argv = malloc((argc+1)*sizeof(char *));

for (i = 0; i < argc; i++)

{

argv[i] = arg[i];

}

argv[i] = (char *) NULL;

if (execv(arg[0],argv) == -1)

{

yyerror("script failed");

perror("execvp");

exit(1);

}

}

else /* parent */

{

if (wait(&status) != pid)

{

printf("Wait for child failed\n");

perror("wait");

return false;

}

else

{

if (WIFSIGNALED(status))

{

printf("Script %s returned: %s\n",comm,WTERMSIG(status));

return false;

}

if (! WIFEXITED(status))

{

return false;

}

134 The unix programming environment

if (WEXITSTATUS(status) == 0)

{

return true;

}

else

{

return false;

}

}

}

}

/***/

SplitCommand(comm,arg)

char *comm, arg[maxshellargs][bufsize];

{ char *sp;

int i = 0, j;

char buff[bufsize];

for (sp = comm; *sp != NULL; sp++)

{

bzero(buff,bufsize);

if (i >= maxshellargs-1)

{

yyerror("Too many arguments in embedded script");

FatalError("Use a wrapper");

}

while (*sp == ' ' || *sp == '\t')

{

sp++;

}

switch (*sp)

{

case '\"': sscanf (++sp,"%[^\"]",buff);

break;

case '\'': sscanf (++sp,"%[^\']",buff);

break;

default: sscanf (sp,"%s",buff);

break;

}

for (j = 0; j < bufsize; j++)

Chapter 9: C programming 135

{

arg[i][j] = buff[j];

}

sp += strlen(arg[i]);

i++;

}

return (i);

}

In this example, the script waits for the exit signal from the child process before continuing.

The return value from the child is available from the wait function with the help of a set of

macros de�ned in `/usr/include/sys/wait.h'. The value is given by WTERMSIG(status).

In the �nal example, we can open a pipe to a process directly in a C program as though it

were a �le, by using the function popen(). Pipes may be opened for reading or for writing,

in exactly the same way as a �le is opened. The child process is automatically synchronized

with the parent using this method. Here is a program which opens a unix command for

reading (both stdout and stderr) from the child process are piped into the program. Notice

that the syntax used in this call is that used by the Bourne shell, since this is build deeply

into the unix execution design.

#define bufsize 1024

FILE *pp;

char VBUFF[bufsize];

...

if ((pp = popen("/sbin/mount -va 2<&1","r")) == NULL)

{

printf("Failed to open pipe\n");

return errorcode;

}

while (!feof(pp))

{

fgets(VBUFF,bufsize,pp);

/* Just write the output to stdout */

printf ("Pipe read: %s\n",VBUFF);

}

pclose(pp);

136 The unix programming environment

9.11 A more secure popen()

One problem with the popen() system call is that it uses a shell to execute the command

it obtains a pipe to. In the past this has been used to allow Unix security breaches, using

a so-called IFS attack which can trick the shell into executing a program with the name of

the �rst node in the directory of the executable. For instance,if the pipe was to open the

program `/bin/ps', this coudl be tricked into executing a program in the current working

directory of the process called `bin' with argument `ps'.

The solution is not to use a shell at all, but to replace popen() with a version which

calls exec() directly. Here is a safe version from the source code of cfengine:

#define bufsize 4096

#define maxshellargs 20

pid_t *CHILD;

int MAXFD = 20; /* Max number of simultaneous pipes */

/***/

FILE *cfpopen(command, type)

char *command, *type;

{ char arg[maxshellargs][bufsize];

int i, argc, pd[2];

char **argv;

pid_t pid;

FILE *pp = NULL;

if ((*type != 'r' && *type != 'w') || (type[1] != '\0'))

{

errno = EINVAL;

return NULL;

}

if (CHILD == NULL) /* first time */

{

if ((CHILD = calloc(MAXFD,sizeof(pid_t))) == NULL)

{

return NULL;

}

}

if (pipe(pd) < 0) /* Create a pair of descriptors to this process */

{

return NULL;

}

if ((pid = fork()) == -1)

Chapter 9: C programming 137

{

return NULL;

}

if (pid == 0)

{

switch (*type)

{

case 'r':

close(pd[0]); /* Don't need output from parent */

if (pd[1] != 1)

{

dup2(pd[1],1); /* Attach pp=pd[1] to our stdout */

dup2(pd[1],2); /* Merge stdout/stderr */

close(pd[1]);

}

break;

case 'w':

close(pd[1]);

if (pd[0] != 0)

{

dup2(pd[0],0);

close(pd[0]);

}

}

for (i = 0; i < MAXFD; i++)

{

if (CHILD[i] > 0)

{

close(CHILD[i]);

}

argc = SplitCommand(command,arg);

argv = (char **) malloc((argc+1)*sizeof(char *));

if (argv == NULL)

{

FatalError("Out of memory");

}

for (i = 0; i < argc; i++)

{

138 The unix programming environment

argv[i] = arg[i];

}

argv[i] = (char *) NULL;

if (execv(arg[0],argv) == -1)

{

sprintf(OUTPUT,"Couldn't run %s",arg[0]);

CfLog(cferror,OUTPUT,"execv");

}

_exit(1);

}

}

else

{

switch (*type)

{

case 'r':

close(pd[1]);

if ((pp = fdopen(pd[0],type)) == NULL)

{

return NULL;

}

break;

case 'w':

close(pd[0]);

if ((pp = fdopen(pd[1],type)) == NULL)

{

return NULL;

}

}

CHILD[fileno(pp)] = pid;

return pp;

}

}

/***/

cfpclose(pp)

FILE *pp;

Chapter 9: C programming 139

{ int fd, status;

pid_t pid;

Debug("cfpclose(pp)\n");

if (CHILD == NULL) /* popen hasn't been called */

{

return -1;

}

fd = fileno(pp);

if ((pid = CHILD[fd]) == 0)

{

return -1;

}

CHILD[fd] = 0;

if (fclose(pp) == EOF)

{

return -1;

}

Debug("cfpopen - Waiting for process %d\n",pid);

#ifdef HAVE_WAITPID

while(waitpid(pid,&status,0) < 0)

{

if (errno != EINTR)

{

return -1;

}

}

return status;

#else

if (wait(&status) != pid)

{

return -1;

}

else

{

if (WIFSIGNALED(status))

{

140 The unix programming environment

return -1;

}

if (! WIFEXITED(status))

{

return -1;

}

return (WEXITSTATUS(status));

}

#endif

}

/***/

/* Command exec aids */

/***/

SplitCommand(comm,arg)

char *comm, arg[maxshellargs][bufsize];

{ char *sp;

int i = 0, j;

char buff[bufsize];

for (sp = comm; sp < comm+strlen(comm); sp++)

{

bzero(buff,bufsize);

if (i >= maxshellargs-1)

{

CfLog(cferror,"Too many arguments in embedded script","");

FatalError("Use a wrapper");

}

while (*sp == ' ' || *sp == '\t')

{

sp++;

}

switch (*sp)

{

case '\0': return(i-1);

case '\"': sscanf (++sp,"%[^\"]",arg[i]);

break;

case '\'': sscanf (++sp,"%[^\']",arg[i]);

break;

case '`': sscanf (++sp,"%[^`]",arg[i]);

Chapter 9: C programming 141

break;

default: sscanf (sp,"%s",arg[i]);

break;

}

sp += strlen(arg[i]);

i++;

}

return (i);

}

9.12 Traps and signals

Processes can receive signals from the UNIX kernel at any time. Some of these signals

terminate the execution of the program. This can cause problems if the program is in the

middle of critical activity such as writing to a �le. For that reason we can trap signals and

provide our own routine for handling them in a special way.

A signal handler is made by calling the function `signal()' for each signal and by

specifying a pointer to a function which will be called in the event of a signal. For example:

main ()

{ int HandleSignal();

signal(SIGTERM,HandleSignal);

}

HandleSignal()

{

/* Tidy up and exit cleanly */

exit(0);

}

`SIGTERM' is the usual signal sent by the command `kill'. There are many other signals

which can be sent to programs. Here is list. You have to decide for yourself whether or not

you want to provide your own signal handling function. To ignore a signal, you write

signal(SIGtype,SIG_IGN);

To remove a signal handler and re-activate a signal, you write

signal(SIGtype,SIG_DFL);

142 The unix programming environment

9.13 Regular expressions

A regular expression is a pattern for matching strings of text. We have met regular

expressions earlier in connection with the shell and Perl. Naturally these earlier encounters

have their roots in C functions for handling expressions. A regular expression is used by

�rst `compiling' it into a convenient data structure. Then a matching function is used to

compare the expression with a test string. In this example program we show how a regular

expression typed in as an argument to the program is found within strings of input entered

on the keyboard.

#include <stdio.h>

#include <regex.h>

main (argc,argv)

int argc;

char **argv;

{

char buffer[1024];

regex_t rx;

regmatch_t match;

size_t nmatch = 1;

if (regcomp(&rx, argv[1], REG_EXTENDED) != 0)

{

perror("regcomp");

return;

}

while (!feof(stdin))

{

fgets(buffer,1024,stdin);

if (regexec(&rx,buffer,1,&match,0) == 0)

{

printf("Matched:(%s) at %d to %d",buffer,match.rm_so,match.rm_eo);

}

}

regfree(&rx);

}

Here is an example of its use. The output of the program is in italics

% a.out xyz

this is a string

Chapter 9: C programming 143

another string

an xyz string

Matched: (an xyz string
) at 3 to 6
another xyz zyxxyz string

Matched: (another xyz xyz string
) at 8 to 11

% a.out 'xyz|abc'

This is a string

An abc string

Matched: (An abc string
) at 3 to 6
Or an xyz string

Matched: (Or an xyz string
) at 6 to 9

If you don't want the match data set &pm to NULL. To get an exact match rather than a

substring check that the bounds are 0 and strlen(argv[1])-1.

9.14 DES encryption

Encryption with the SSLeay library, compile with command

gcc crypto.c -I/usr/local/ssl/include -L/usr/local/ssl/lib -lcrypto

Example of normal triple DES encryption which works only on an 8-byte bu�er:

/***/

/* */

/* File: crypto.c */

/* */

/* Compile with: gcc program.c -lcrypto (SSLeay) */

/* */

/***/

#include <stdio.h>

#include <des.h>

#define bufsize 1024

/* Note how this truncates to 8 characters */

main ()

{ char in[bufsize],out[bufsize],back[bufsize];

des_cblock key1,key2,key3,seed = {0xFE,0xDC,0xBA,0x98,0x76,0x54,0x32,0x10};

des_key_schedule ks1,ks2,ks3;

144 The unix programming environment

strcpy(in,"1 2 3 4 5 6 7 8 9 a b c d e f g h i j k");

des_random_seed(seed);

des_random_key(key1);

des_random_key(key2);

des_random_key(key3);

des_set_key((C_Block *)key1,ks1);

des_set_key((C_Block *)key2,ks2);

des_set_key((C_Block *)key3,ks3);

des_ecb3_encrypt((C_Block *)in,(C_Block *)out,ks1,ks2,ks3,DES_ENCRYPT);

printf("Encrypted [%s] into [%s]\n",in,out);

des_ecb3_encrypt((C_Block *)out,(C_Block *)back,ks1,ks2,ks3,DES_DECRYPT);

printf("and back to.. [%s]\n",back);

}

Triple DES, chaining mode, for longer strings (which must be a multiple of 8 bytes):

/***/

/* */

/* File: crypto.c */

/* */

/* Compile with: gcc program.c -lcrypto (SSLeay) */

/* */

/***/

#include <stdio.h>

#include <des.h>

#define bufsize 1024

/* This can be used on arbitrary length buffers */

main ()

{ char in[bufsize],out[bufsize],back[bufsize],workvec[bufsize];

des_cblock key1,key2,key3,seed = {0xFE,0xDC,0xBA,0x98,0x76,0x54,0x32,0x10};

des_key_schedule ks1,ks2,ks3;

strcpy(in,"1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z");

des_random_seed(seed);

des_random_key(key1);

Chapter 9: C programming 145

des_random_key(key2);

des_random_key(key3);

des_set_key((C_Block *)key1,ks1);

des_set_key((C_Block *)key2,ks2);

des_set_key((C_Block *)key3,ks3);

/* This work vector can be intialized t anything ...*/

memset(workvec,0,bufsize);

des_ede3_cbc_encrypt((C_Block *)in,(C_Block *)out,(long)strlen(in),

ks1,ks2,ks3,(C_Block *)workvec,DES_ENCRYPT);

printf("Encypted [%s] into [something]\n",in);

/* .. but this must be initialized the same as above */

memset(workvec,0,bufsize);

/* Note that the length is the original length, not strlen(out) */

des_ede3_cbc_encrypt((C_Block *)out,(C_Block *)back,(long)strlen(in),

ks1,ks2,ks3,(C_Block *)workvec,DES_DECRYPT);

printf("and back to.. [%s]\n",back);

}

9.15 Device control: ioctl

The C function `ioctl' (I/O control) is used to send special control commands to devices

like the disk and the network interface. The syntax of the function is

int ioctl(fd, request, arg)

int fd, request;

long arg;

The �rst parameter is normally as device handle or socket descriptor. The second is a

control parameter. Lists of valid control parameters are normally de�ned in the system

`include' �les for a particular device. They are device and system dependent so you need a

local manual and som detective work to �nd out what they are. The �nal parameter is a

pointer to a variable which receives return data from the device.

`ioctl' commands are device speci�c, by their nature. The commands for the ethernet

interface device are only partially standardized, for example. We could read the ethernet

device (which is called `le0' on a Sun workstation), using the following command:

146 The unix programming environment

include <sys/socket.h> /* Typical includes for internet */

include <sys/ioctl.h>

include <net/if.h>

include <netinet/in.h>

include <arpa/inet.h>

include <netdb.h>

include <sys/protosw.h>

include <net/route.h>

struct ifreq IFR;

int sk;

struct sockaddr_in sin;

strcpy(IFR.ifr_name,"le0");

IFR.ifr_addr.sa_family = AF_INET;

if ((sk = socket(AF_INET,SOCK_DGRAM,IPPROTO_IP)) == -1)

{

perror("socket");

exit(1);

}

if (ioctl(sk,SIOCGIFFLAGS, (caddr_t) &IFR) == -1)

{

perror ("ioctl");

exit(1);

}

We shall not go into the further details of `ioctl', but simply note its role in system

programming.

9.16 Database example (Berkeley db)

DBT key,value;

DB *dbp;

DBC *dbcp;

db_recno_t recno;

if ((errno = db_open(CHECKSUMDB,DB_BTREE, DB_CREATE, 0664, NULL, NULL, &dbp)) != 0)

{

sprintf(OUTPUT,"cfd: couldn't open checksum database %s\n",CHECKSUMDB);

CfLog(cferror,OUTPUT,"db_open");

return false;

}

bzero(&value,sizeof(value));

bzero(&key,sizeof(key));

Chapter 9: C programming 147

key.data = filename;

key.size = strlen(filename)+1;

value.data = dbvalue;

value.size = sizeof(dbvalue);

if ((errno = dbp->del(dbp,NULL,&key,0)) != 0)

{

CfLog(cferror,"","db_store");

}

key.data = filename;

key.size = strlen(filename)+1;

if ((errno = dbp->put(dbp,NULL,&key,&value,0)) != 0)

{

CfLog(cferror,"put failed","db->put");

}

if ((errno = dbp->get(dbp,NULL,&key,&value,0)) == 0)

{

/* Not found ... */

return;

}

dbp->close(dbp,0);

9.17 Text parsing tools: `lex' and `yacc'

This section is a taster only. You only need to know what lex and yacc are, not how they

work.

`lex' and `yacc' are two tools for the C programmer who wishes to make a text parser.

A text parser is a program which reads a text �le and interprets the symbols in it. Every

programming language must include a text parser, for instance.

The `yacc' (yet another compiler compiler) program generates C code which parses a

text�le, given a description of the syntax rules for the �le. In other words, we de�ne the

logical structure of the text �le, according to the way we wish to interpret it and give the

rules to `yacc'. `yacc' produces C code from this which does the job.

`lex' is a `lexer'. It is normally used together with `yacc'. `lex' tokenizes or identi�es

symbols in a �le. What that means is that it reads in a �le and matches types of string in

the �le which are de�ned in terms of regular expressions by the programmer, and returns

symbolic values for those strings.

Although `lex' can be used by independently of `yacc', it is normally used to identify

the di�erent types of string which de�ne the syntax of a �le. For example, suppose `yacc'

was parsing a C program. On the beginning of a line, it might expect to �nd either a

variable name or a preprocessor symbol. A variable name is just a string consisting of

characters from the set `0-9a-Z_', whereas a preprocessor command always starts with the

148 The unix programming environment

character `#'. `yacc' passes control to `lex' which reads the �le and matches the �rst object

on the line. If it �nds a variable, it returns to `yacc' a token which is a number or value

corresponding to `variable'. Similarly, if it �nds a preprocessor command, it returns a token

for that. If it doesn't match either type it returns something else and `yacc' signals a syntax

error.

Here is a `yacc' �le which parses a �le consisting of lines of the form a+b, where a

and b are numbers { any other syntax is incorrect. We could have used this later in the

example program for the client-server example, See Section 10.1 [Sockets], page 151.

You can learn more about lex and yacc in "Lex and Yacc", J. Levine, T. Mason and D.

Brown, O'Reilly and Assoc.

%{

/***/

/* */

/* PARSER for a + b protocol */

/* */

/* The section between the single %'s gets copied verbatim into */

/* the resulting C code yacc generates -- including this comment! */

/* */

/***/

#include <stdio.h>

extern char *yytext;

%}

%token NUMBER PLUS

%%

specification: { yyerror("Warning: invalid statement");}

| statement;

statement: NUMBER PLUS NUMBER;

The lexer to go with this parser generates the tokens NUMBER and PLUS used by `yacc':

%{

/***/

/* */

/* LEXER for a + b protocol */

/* */

/* Returns token types NUMBER and PLUS to yacc, one at a time */

/* */

/***/

#include "y.tab.h" /* yacc produces this -- need this line! */

Chapter 9: C programming 149

%}

number [0-9]+

plus [+]

%%

number {

return NUMBER;

}

plus {

return PLUS;

}

. {

return yytext[0];

}

%%

/* EOF */

The main program which uses `yacc' and `lex' looks like this:

extern FILE *yyin;

main ()

{

if ((yyin = fopen("My_Input_File","r")) == NULL) /* Open file */

{

printf("Can't open file\n");

exit (1);

}

while (!feof(yyin))

{

yyparse();

}

fclose (yyin);

}

150 The unix programming environment

9.18 Exercises

1. Write a daemon program with a signal handler which makes a log of the heaviest

(maximum cpu) process running, every �ve minutes. The program should exit if the

log �le becomes greater than 5-kbytes.

2. Rewrite in C the perl program which lists all the �les in the current directory containing

a certain string.

3. Write a version of `more' which prints control characters safely. See the `cat -e' com-

mand.

4. Write a Make�le to create a shared library from a number of object �les.

Chapter 10: Network Programming 151

10 Network Programming

Client-server communication is the basis of modern operating system technology. The

Unix socket mechanism makes stream-based communication virtually transparent.

10.1 Socket streams

Analogous to �lestreams are sockets or TCP/IP network connections. A socket is a two-

way (read/write) pseudo-�le node. An open socket stream is like an open �le-descriptor.

Berkeley sockets are part of the standard C library.

There are two main kinds of socket: TCP/IP sockets and Unix domain sockets. Unix

sockets can be used to provide local interprocess communication using a �lestream com-

munication protocol. TCP/IP sockets open �le descriptors across the network. A TCP/IP

socket is a �le stream associated with an IP address and a port number. We write to a

socket descriptor just as with a �le descriptor, either with write() or using send().

When sending binary data over a network we have to be careful about machine level

representations of data. Operating systems (actually the hardware they run on) fall into

two categories known as big endian and little endian. The names refer to the byte-order

of numerical representations. The names indicate how large integers (which require say

32 bits or more) are stored in memory. Little endian systems store the least signi�cant

byte �rst, while big endian systems store the most signi�cant byte �rst. For example, the

representation of the number 34,677,374 has either of these forms.

Big | 2 | 17 | 34 | 126 |

Little | 126 | 34 | 17 | 2 |

Obviously if we are transferring data from one host to another, both hosts have to

agree on the data representation otherwise there would be disastrous consequences. This

means that there has to be a common standard of network byte ordering. For example,

Solaris (SPARC hardware) uses network byte ordering (big endian), while GNU/Linux

(Intel hardware) uses the opposite (little endian). This means that Intel systems have to

convert the format every time something is transmitted over the network. Unix systems

provide generic functions for converting between host-byteorder and network-byteorder for

small and long integer data:

htonl, htons, ntohl, ntohs

Here we list two example programs which show how to make a client-server pair. The server

enters a loop, and listens for connections from any clients (the generic address `INADDR_ANY'

is a wildcard for any address on the current local network segment). The client program

sends requests to the server as a protocol in the form of a string of the type `a + b'. Normally

152 The unix programming environment

`a' and `b' are numbers, in which case the server returns their sum to the client. If the

message has the special form `halt + *', where the star is arbitrary, then the server shuts

down. Any other form of message results in an error, which the server signals to the client.

The basic structure of the client-server components in terms of system calls is this:

Client:

socket() Create a socket

connect() Contact a server socket (IP + port)

while (?)

{

send() Send to server

recv() Receive from server

}

Server:

socket() Create a socket

bind() Associates the socket with a �xed address

listen() Create a listen queue

while()

{

reply=accept() Accept a connection request

recv() Receive from client

send() Send to client

}

/**/

/* */

/* The client part of a client-server pair. This simply takes two */

/* numbers and adds them together, returning the result to the client */

/* */

/* Compiled with: */

/* cc server.c */

/* */

/* User types: */

/* 3 + 5 */

/* a + b */

/* halt + server */

/**/

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

Chapter 10: Network Programming 153

#define PORT 9000 /* Arbitrary non-reserved port */

#define HOST "nexus.iu.hioslo.no"

#define bufsize 20

/**/

/* Main */

/**/

main (argc,argv)

int argc;

char *argv[];

{ struct sockaddr_in cin;

struct hostent *hp;

char buffer[bufsize];

int sd;

if (argc != 4)

{

printf("syntax: client a + b\n");

exit(1);

}

if ((hp = gethostbyname(HOST)) == NULL)

{

perror("gethostbyname: ");

exit(1);

}

memset(&cin,0,sizeof(cin)); /* Another way to zero memory */

cin.sin_family = AF_INET;

cin.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;

cin.sin_port = htons(PORT);

printf("Trying to connect to %s = %s\n",HOST,inet_ntoa(cin.sin_addr));

if ((sd = socket(AF_INET,SOCK_STREAM,0)) == -1)

{

perror("socket");

exit(1);

}

if (connect(sd,&cin,sizeof(cin)) == -1)

{

perror("connect");

154 The unix programming environment

exit(1);

}

sprintf(buffer,"%s + %s",argv[1],argv[3]);

if (send(sd,buffer,strlen(buffer),0) == -1)

{

perror ("send");

exit(1);

}

if (recv(sd,buffer,bufsize,0) == -1)

{

perror("recv");

exit (1);

}

printf ("Server responded with %s\n",buffer);

close (sd);

unlink("./socket");

}

/**/

/* */

/* The server part of a client-server pair. This simply takes two */

/* numbers and adds them together, returning the result to the client */

/* */

/* Compiled with: */

/* cc server.c */

/* */

/**/

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define PORT 9000

#define bufsize 20

#define queuesize 5

#define true 1

#define false 0

/**/

/* Main */

/**/

Chapter 10: Network Programming 155

main ()

{ struct sockaddr_in cin;

struct sockaddr_in sin;

struct hostent *hp;

char buffer[bufsize];

int sd, sd_client, addrlen;

memset(&sin,0,sizeof(sin)); /* Another way to zero memory */

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = INADDR_ANY; /* Broadcast address */

sin.sin_port = htons(PORT);

if ((sd = socket(AF_INET,SOCK_STREAM,0)) == -1)

{

perror("socket");

exit(1);

}

if (bind(sd,&sin,sizeof(sin)) == -1) /* Must have this on server */

{

perror("bind");

exit(1);

}

if (listen(sd,queuesize) == -1)

{

perror("listen");

exit(1);

}

while (true)

{

if ((sd_client = accept(sd,&cin,&addrlen)) == -1)

{

perror("accept");

exit(1);

}

if (recv(sd_client,buffer,sizeof(buffer),0) == -1)

{

perror("recv");

exit(1);

}

if (!DoService(buffer))

156 The unix programming environment

{

break;

}

if (send(sd_client,buffer,strlen(buffer),0) == -1)

{

perror("send");

exit(1);

}

close (sd_client);

}

close (sd);

printf("Server closing down...\n");

}

/**/

DoService(buffer)

char *buffer;

/* This is the protocol section. Here we must */

/* check that the incoming data are sensible */

{ int a=0,b=0;

printf("Received: %s\n",buffer);

sscanf(buffer,"%d + %d\n",&a,&b);

if (a > 0 && b> 0)

{

sprintf(buffer,"%d + %d = %d",a,b,a+b);

return true;

}

else

{

if (strncmp("halt",buffer,4) == 0)

{

sprintf(buffer,"Server closing down!");

return false;

}

else

{

sprintf(buffer,"Invalid protocol");

return true;

}

Chapter 10: Network Programming 157

}

}

In the example we use `streams' to implement a typical input/output behaviour for C.

A stream interface is a so-called reliable protocol. There are other kinds of sockets too,

called unrealiable, or UDP sockets. Features to notice on the server are that we must

bind to a speci�c address. The client is always implicitly bound to an address since a socket

connection always originates from the machine on which the client is running. On the server

however we want to know which addresses we shall be receiving requests from. In the above

example we use the generic wildcard address `INADDR_ANY' which means that any host can

connect to the server. Had we been more speci�c, we could have limited communication to

two machines only.

By calling `listen()' we set up a queue for incoming connections. Rather than forking

a separate process to handle each request we set up a queue of a certain depth. If we exceed

this depth then new clients rtying to connect will be refused connection.

The `accept' call is the mechanism which extracts a `reply handle' from the socket.

Using the handle obtained from this call we can reply to the client without having to open

a special socket explicitly.

An improved server side connection can be setup, reading the service name from

`/etc/services' and setting reusable socket options to avoid busy signals, like this:

struct sockaddr_in cin, sin;

struct servent *server;

int sd, addrlen = sizeof(cin);

int portnumber, yes=1;

if ((server = getservbyname(service-name,"tcp")) == NULL)

{

CfLog(cferror,"Couldn't get cfengine service","getservbyname");

exit (1);

}

bzero(&cin,sizeof(cin));

/* Service returns network byte order */

sin.sin_port = (unsigned short)(server->s_port);

sin.sin_addr.s_addr = INADDR_ANY;

sin.sin_family = AF_INET;

if ((sd = socket(AF_INET,SOCK_STREAM,0)) == -1)

{

CfLog(cferror,"Couldn't open socket","socket");

exit (1);

}

if (setsockopt (sd, SOL_SOCKET, SO_REUSEADDR,

158 The unix programming environment

(char *) &yes, sizeof (int)) == -1)

{

CfLog(cferror,"Couldn't set socket options","sockopt");

exit (1);

}

if (bind(sd,(struct sockaddr *)&sin,sizeof(sin)) == -1)

{

}

/* etc */

10.2 Multithreading a server

All the arguments must be collected into a struct, since only one argument pointer can

be sent to the pthread functions.

#include <pthread.h>

SpawnCfGetFile(args)

struct cfd_thread_arg *args;

{ pthread_t tid;

void *CfGetFile();

pthread_attr_init(&PTHREADDEFAULTS);

pthread_attr_setdetachstate(&PTHREADDEFAULTS,PTHREAD_CREATE_DETACHED);

if (pthread_create(&tid,&PTHREADDEFAULTS,CfGetFile,args) != 0)

{

CfLog(cferror,"pthread_create failed","create");

CfGetFile(args);

}

pthread_attr_destroy(&PTHREADDEFAULTS);

}

/***/

void *CfGetFile(args)

struct cfd_thread_arg *args;

{ pthread_mutex_t mutex;

Chapter 10: Network Programming 159

if (pthread_mutex_lock(&mutex) != 0)

{

CfLog(cferror,"pthread_mutex_lock failed","pthread_mutex_lock");

free(args->replyfile); /* from strdup in each thread */

DeleteConn(args->connect);

free((char *)args);

return NULL;

}

ACTIVE_THREADS++; /* Global variable */

if (pthread_mutex_unlock(&mutex) != 0)

{

CfLog(cferror,"pthread_mutex_unlock failed","unlock");

}

/* send data */

if (pthread_mutex_lock(&mutex) != 0)

{

CfLog(cferror,"pthread_mutex_lock failed","pthread_mutex_lock");

return;

}

ACTIVE_THREADS--;

if (pthread_mutex_unlock(&mutex) != 0)

{

CfLog(cferror,"pthread_mutex_unlock failed","unlock");

}

#endif

return NULL;

}

10.3 System databases

The C library calls which query the databases are, amongst others,

getpwnam get password data by name

getpwuid get password data by uid

getgrnam get group data by name

gethostent get entry in hosts database

getnetgrent get entry in netgroups database

getservbyname get servive by name

getservbyport get service by port

160 The unix programming environment

get protobyname get protocol by name

For a complete list and how to use these, see the UNIX manual.

The following example shows how to read the password �le of the system. The functions

used here can be used regardless of whether the network information service (NIS) is in use.

The data are returned in a structure which is de�ned in `/usr/include/pwd.h'.

/**/

/* */

/* Read the passwd file by name and sequentially */

/* */

/**/

#include <unistd.h>

#include <pwd.h>

main ()

{ uid_t uid;

struct passwd *pw;

uid = getuid();

pw = getpwuid(uid);

printf ("Your login name is %s\n",pw->pw_name);

printf ("Now here comes the whole file!\n\n");

setpwent();

while (getpwent())

{

printf ("%s:%s:%s\n",pw->pw_name,pw->pw_gecos,pw->pw_dir);

}

endpwent();

}

10.4 DNS - The Domain Name Service

The second network database service is that which converts host and domain names into

IP numbers and vice versa. This is the domain name service, usually implemented by the

BIND (Berkeley Internet Name Domain) software. The information here concerns version

4.9 of this software.

Chapter 10: Network Programming 161

10.4.1 gethostbyname()

This is perhaps the most important function form hostname lookup. `gethostbyname()'

gets its information either from �les, NIS or DNS. Its behaviour is con�gured by the �les

mentioned above, See Section 10.4 [DNS], page 160. It is used to look up the IP address of a

named host (including domain name if DNS is used). On the con�gurable systems described

above, the full list of servers is queried until a reply is obtained. The order in which the

di�erent services are queried is important here since DNS returns a fully quali�ed name

(host name plus domain name) whereas NIS and the `/etc/hosts' �le database return only

a hostname.

gethostbyname returns data in the form of a pointer to a static data structure. The

syntax is

#include <netdb.h>

struct hostent *hp;

hp = gethostbyname("myhost.domain.country")

The resulting structure varies on di�erent implementations of UNIX, but the `old BSD

standard' is of the form:

struct hostent

{

char *h_name; /* official name of host */

char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses from name server */

};

#define h_addr h_addr_list[0] /* address, for backward compatiblity */

The structure contains a list of addresses and or aliases from the nameserver. The interesting

quantity is usually extracted by means of the macro `h_addr' whcih gives the �rst value in

the address list, though o�cially one should examine the whole list now.

This value is a pointer which can be converted into a text form by the following hideous

type transformation:

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

struct sockaddr_in sin;

cin.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;

printf("IP address = %s\n",inet_ntoa(cin.sin_addr));

162 The unix programming environment

See the client program in the �rst section of this chapter for an example of its use.

10.5 C support for NFS

The support for NFS mounting in the standard C library is through two sources. NFS

is based on the Sun's RPC system, so the basic calls are only instances of standard RPC

protocols.

The C functions in the standard input/output library can be used to access NFS �lesys-

tems. Since NFS imitates the UNIX �lesystem as closely as possible, NFS �lesystems can

be mounted in exactly the same way as ordinary �lesystems. Unfortunately, the C functions

which perform the mount operation in UNIX and depressingly non-standard. They di�er

on almost every implementation of UNIX.

The basic function which mounts a �lesystem, in `mount' (see man (2) mount). The

mount table is stored in a �le /etc/mtab on BSD systems (again the name varies wildly

from UNIX to UNIX, mnttab on HPUX for instance). The �le /etc/rmtab on an NFS

server contains a list of remote-mounted �lesystems which are mounted by remote clients.

C functions exist which can read the �lesystem tables and place the resulting data in C

struct types. Alas, these struct de�ntions are also quite di�erent on di�erent systems.

See `/usr/include/sys/mount.h', so the user wishing to write system-independent code is

confounded at the lowest level.

10.6 Exercises

1. Use `gethostbyname()' to make a simple program like `nslookup' which gives the

internet address of a named host.

2. Modify the client server example above to make a `remote ls' command called `rls'.

You should be able to use the syntax

rls (options) hostname:/path/to/file

Appendix A: Summary of programming idioms. 163

Appendix A Summary of programming idioms.

True and false

C shell

True - non-zero/non-empty value

False - zero or null string

Bourne shell

True - 0 returned by shell command

False - non-zero returned by shell command

(Note that "test" converts from C shell style to Bourne shell)

Perl

True - non-zero/non-empty value

False - zero or null string

/* C */

True - non zero integer

False - zero integer

Input from tty
C shell

$<

Bourne shell

line

read

Perl

<STDIN>

/* C */

scanf

Redirection of I/O

C shell

command > file

164 The unix programming environment

command >& file

command >> file

command1 | command2

Bourne shell

command > file

command > file 2>&1

command >> file

command1 | command2

Perl

open (HANDLE,">file")

open (HANDLE,">file 2>&1")

open (HANDLE,">>file")

open (HANDLE,"command1 |")

open (HANDLE,"| command2")

/* C */

fopen ("file","w"); printf(..)

fopen ("file","w"); printf(..); fprintf(stderr,..)

fopen ("file","a"); printf(..)

popen ("command1","r")

popen ("command2","w")

Loops and tests

/* C */ Shell

foreach end if then else endif

while end switch case breaksw endsw

repeat

Bourne shell

while do done if then else fi

until do done case in esac

for in do done

Perl

while if then else

for unless else

foreach

until

do while

do until

Appendix A: Summary of programming idioms. 165

/* C */

while if then else

do while switch case

for

Arguments from command line
C shell

$argv[]

$#argv

Bourne Shell

$1, $2, $3... $*

$#

Perl

$ARGV[]

$#ARGV

/* C */

char argv[][]

int argc

Arithmetic
C shell

a = $b + $c

Bourne shell

a = `expr $b + $c`

Perl

$a = $b + $c;

/* C */

a = b + c;

Numerical comparison
C shell

if ($x == $y) then

endif

166 The unix programming environment

Bourne shell

if [$x -eq $y]; then

fi

Perl

if ($x == $y)

{

}

/* C */

if (x == y)

{

}

String comparison

C shell

if ($x == $y) then

endif

Bourne shell

if [$x = $y]; then

fi

Perl

if ($x eq $y) then

{

}

/* C */

if (strcmp(x,y) == 0)

{

}

Opening a �le

C shell, Bourne shell - cannot be done (pipes only)

Perl

open (READ_HANDLE,"filename");

Appendix A: Summary of programming idioms. 167

open (WRITE_HANDLE,"> filename");

open (APPEND_HANDLE,">> filename");

/* C */

FILE *fp;

fp = fopen ("file","r");

fp = fopen ("file","w");

fp = fopen ("file","a");

Opening a directory

C shell

foreach dir (directory/*)

...

end

Bourne shell

for dir in directory/* ;

do

...

done

Perl

opendir (HANDLE,"directory") || die;

while ($entry = readdir(HANDLE))

{

}

closedir(HANDLE);

C

#include <dirent.h>

DIR *dirh;

struct dirent *dirp;

if ((dirh = opendir(name)) == NULL)

{

perror("opendir")

exit(1);

}

for (dirp = readdir(dirh); dirp != NULL; dirp = readdir(dirh))

168 The unix programming environment

{

... /* dirp->d_name points to child */

}

closedir(dirh);

Testing �le types

C shell

if (-f file) # plain file

if (-d file) # directory

Bourne shell

if [-f file] # plain file

if [-d file] # directory

Perl

if (-f file) # plain file

if (-d file) # directory

if (-l file) # symbolic link

/* C */

#include <sys/stat.h>

struct stat statvar;

stat("file", &statvar);

if (S_ISREG(statvar.mode)) /* plain file */

if (S_ISDIR(statvar.mode)) /* directory */

lstat("file", &statvar);

if (S_ISLNK(statvar.mode)) /* symbolic link */

Command and Variable Index 169

Command and Variable Index

!
`!' in sh . 66

`!' not . 59

`!=' . 54

`!=' in sh . 66

`!~' . 54

$
$ in regular expressions 24

$? in make . 123

$@ in make . 123

$< in make . 123

&
& . 43

`&' AND . 59

'
' . 47

(
() in csh . 43

*
* . 22

* in regular expressions 24

-
`-' . 59

`--' . 59

--help . 8

`-=' . 59

`-a' in sh . 66

-d �le . 53

`-d' in sh . 66

-e �le . 53

`-eq' in sh . 66

-f �le . 53

`-f' in sh . 66

`-g' in sh . 66

`-ge' in sh . 66

`-gt' in sh . 66

-h . 8

`-le' in sh . 66

`-lt' in sh . 66

`-ne' in sh . 66

`-o' in sh . 66

-r �le . 53

`-r' in sh . 66

`-s' in sh . 66

`-u' in sh . 66

-w �le . 53

`-w' in sh . 66

`-x' in sh . 66

-z �le . 53

-z in perl . 95

.

. 11

. in regular expressions 24

.. 11

.cshrc . 63

.profile. 63

.xsession . 32

/

`/bin' . 11

`/bin/csh' . 10

`/bin/sh' . 10

`/dev' . 12

`/devices' . 12

`/etc' . 11

`/export' . 12

`/home' . 12

`/sbin' . 12

`/sys' . 12

`/users'. 12

`/usr' . 11

`/usr/bin' . 11

`/usr/local' . 12

`/var' . 12

`/var/adm' . 12

`/vr/spool' . 12

170 The unix programming environment

:
:e . 58

:h . 58

:r . 58

:t . 58

=
`=' assignment . 59

`=' in sh . 66

`==' . 54, 77

`==' equal to (compare) . 59

`=~' . 54

?
? . 22

? in regular expressions 24

[
[] . 22

[] in regular expressions 24

`
` . 47

`...` . 24

`` shell construction . 24

|

| . 43

`|' OR . 59

`||' logical OR . 59

"

" . 47

+

`+' . 59

+ in regular expressions 24

`+=' . 59

`++' . 59

>

> . 43

`>' . 54

`>' greater than . 59

`>=' . 54

>> . 43

`>>' shift . 59

^

^ in regular expressions 24

`^' XOR . 59

<

< . 43

`<' . 54

`<' less than . 59

`<=' . 54

<< . 43, 45

`<<' shift . 59

A
apropos . 8

`ar' . 29

`archie'. 30

argc in C . 125

argv in C . 125

`awk' . 27

B
breaksw . 57

C
`cat' . 27

`cc' . 29

`CC' . 29

`chgrp' . 27

`chmod' . 27

`chown' . 27

`cmdtool' . 26

continue. 57

`cp' . 26

crypt() . 88

hCTRL-Ai . 25

Command and Variable Index 171

hCTRL-Ci . 25

hCTRL-Di . 25

hCTRL-Ei . 25

hCTRL-Li . 25

hCTRL-Zi. 25

`cut' . 27

D

`date' . 30

`dbx' . 29

`dc' . 30

ddd . 29

`df' . 28

DISPLAY . 21

`domainname' . 29

`du' . 28

`dvips' . 30

E

`ed' . 26

`elm' . 28

`emacs' . 26

env . 22

`eq' . 77

F

`find' . 27

`finger'. 28

`fmgr' . 27

`fnews' . 30

foreach . 56

fork() . 89

`ftp' . 28

G

`g++' . 29

`gcc' . 29

`gdb' . 29

getenv() . 125

`ghostscript' . 30

`ghostview' . 30

H

HOME . 21

HOST . 21

`hostname' . 29

I

ioctl(). 145

`irc' . 28

`ispell'. 30

K

keys . 83

L

`latex' . 30

`ld' . 29

LD_LIBRARY_PATH . 21

`LD_LIBRARY_PATH' . 117

`less' . 27

ln . 13

ln -s . 13

`locate'. 27

`lp' . 27

`lpq' . 27

`lpstat'. 27

`ls' . 26

M

man -k . 8

`mesg' . 28

mkdir . 8

`mkdir' . 26

`more' . 27

`mv' . 26

N

`ncftp' . 28

`netstat' . 29

`nslookup' . 29

172 The unix programming environment

P
`paste' . 27

PATH . 21

`pico' . 26

`pine' . 28

`ping' . 30

PRINTER . 21

`PRINTER' . 27

`ps' . 29

R
rand() . 89

`rcpinfo' . 29

`rename' in perl . 95

repeat . 56

`rlogin'. 26

`rmail' . 28

`rmdir' . 26

`rsh' . 26

S
`screen'. 26

`sed' . 27

set . 42

`setroot' . 30

`shelltool' . 26

`showmount' . 29

stderr . 10

stdin . 10

stdout . 10

T
`talk' . 28

`tcl' . 29

`telnet'. 26

TERM . 21

`tex' . 30

`texinfo' . 30

`textedit' . 26

`touch' . 26

U
`uname' . 29

`unlink'. 26

unset . 42

`users' . 28

V
`vi' . 26

`vmstat'. 29

`vmunix'. 12

W
`w' . 28

`whereis' . 27

which . 21

while . 56

`who' . 28

`write' . 28

X
`xarchie' . 30

`xcalc' . 30

`xdvi' . 30

`xedit' . 26

`xemacs'. 26

`xfig' . 30

`xmosaic' . 30

`xpaint'. 30

`xrn' . 30

`xterm' . 26

`xv' . 30

`xxgdb' . 29

Z
`zmail' . 28

Concept Index 173

Concept Index

#

`#!program' sequence . 51, 65

$

$ in regular expressions . 24

`$<' operator . 57

'

h'i and h"i . 47

(

() and subshells. 52

() operators to make array in csh 43

*

* in regular expressions . 24

-

`-I' option to cc . 118

`-L' option to cc . 117

.

. directory . 11, 12

. in regular expressions . 24

.. directory . 11, 12

`.cshrc' �le . 41

`.login' �le . 41

`.profile' set up in sh . 63

.xsession �le . 32

/

`/etc/group' . 37

?

? in regular expressions . 24

[
`[]' for test in sh . 67

[] in regular expressions . 24

`
h̀ i symbol and embedded shells 47

``..`' in perl . 76

|

`|' symbol . 43, 45

+

+ in regular expressions . 24

^

^ in regular expressions . 24

<

`<>' �lehandle in perl. 84

1
`1>' in sh . 64

2
`2>' in sh . 64

`2>&1' in sh. 64

A
`a.out'. 117

accept() . 155

Access bits . 37

Access bits, octal form . 38

Access bits, text form . 38

Access control . 27

Access control lists . 27

Access rights . 37

Access to �les . 37

ACLs . 27

ANSI C . 116

174 The unix programming environment

Appending to a �le with `>>' 44

apropos . 8

`ar' archiver . 29

`archie' program . 30

Argument vector in csh . 51

Argument vector in perl 76, 78

Arguments, command line . 51

`argv' . 51

Arithemtic in sh . 65

Arithemtic operations in csh 59

Arrays (associated) in perl. 79

Arrays (normal) in perl . 78

Arrays and `split' . 79

Arrays in csh . 43

Arrays in perl . 76

Associated arrays, iteration 83

`at' command . 74

AT&T . 7

`awk' . 27

`awk' pattern extractor . 75

B
`Background picture' . 30

Background process . 47, 48

Backwards quotes . 47

bash. 10, 25

`batch' command . 74

Berkeley Internet Name Domain (BIND) 160

`bg' command . 50

Big endian . 151

BIND . 160

bind() . 155

Bourne shell . 10, 63

Break key . 51

`breaksw' . 57

Browsing through a �le. 27

BSD . 7

Build software script . 55

Built in commands . 9

Byte order . 151

C
C . 6

C library calls and shell commands 10

C programming. 115

C shell . 10

C shell setup �les . 41

C, role in unix . 10

C++ su�x rules . 124

Calculator, shell . 30

Calculator, X windows . 30

`cat' command . 27

`cc' . 29

`CC' . 29

CGI protocol . 103

Changing �le mode . 27

`chgrp' command . 27

chgrp command . 39

`chmod' command . 27

chmod command . 38

`chop' command in perl . 86

`chown' command . 27

chown command . 39

`close' command in perl . 84

closedir command . 126

`cmdtool' . 26

Command completion . 46

Command history. 46

Command interpreter . 19

Command line arguments . 51

Command line arguments in C 125

Command line arguments in perl 76, 78

Command line arguments in sh 65

Command path . 21

Command window . 26

Commands as �les . 9

Commands path . 9

Comparison operators in csh 54

Compiler script . 55

Compilers . 29

Compiling huge programs 120

Compiling programs . 117

connect() . 153

`continue' in csh . 57

Continuing long lines. 53

Copy of output to �le . 45

core . 9

`cp' command . 26

Creating directories . 26

Creating �les . 26

`csh' . 10

csh . 25

hCTRL-Ai . 25

hCTRL-Ci . 25

Concept Index 175

hCTRL-Di . 25

hCTRL-Di and EOF . 70

hCTRL-Ei . 25

hCTRL-Li . 25

hCTRL-Zi. 25

Curses . 115

`cut' . 75

Cut as a perl script . 84

`cut' command . 27

D
Database maps . 159

Database support . 90

`date' command . 30

Date stamp, updating . 26

`dbx' debugger . 29

Debugger . 29

Debugger for C . 10

Debugger GUI . 29

Decisions and return codes in sh 66

delete . 9

Dependencies in Make�les 121

`df' command . 28

`die' . 87

Directories, creating. 26

Directories, deleting . 26

dirent directory interface . 126

Disk usage. 28

DISPLAY variable . 33

Display, X. 32

DNS . 160

`do..while' in perl. 81

Domainname . 29

`domainname' command. 29

DOS . 5

Drawing program . 30

`du' command . 28

dvi to postscript . 30

E
`ed' . 26

egrep command . 23

`elm' mailer . 28

`emacs' . 26

Embedded shell. 47

Encryption . 88

End of �le hCTRL-Di . 70

env command . 22

Environment variables . 19, 21

Environment variables in C 125

Environment variables in perl 76, 79

Environment, unix user . 19

envp in C . 125

`eq' and `==' in perl . 77

Error messages . 11

Errors in perl . 87

Executable, making programs 39

Exiting on errors in perl . 87

`EXPORT' command in sh . 63

Expressions, regular . 23

extern variables . 117

Extracting �lename components 58

F
`fg' command . 50

File access permission . 37

File handles in perl . 84

File hierarchy . 11

File mode, changing. 27

File protection bits . 37

File transfer . 28

File type, determining in C 128

Filename completion . 46

Files in perl . 84

Files, iterating over lines . 83

`find' command . 27, 48

Finding commands . 8

Finding FTP �les . 30

`finger' service . 28

`fmgr' �le manager . 27

`fnews' news reader . 30

For loop . 82

for loop in perl. 81

for loop in sh . 65

For loops in perl . 81

foreach . 56

foreach example . 52

Foreach loop . 82

foreach loop in perl . 81

Foreground process . 47

Forking new processes . 89

Formatting text in a �le . 45

Forms in HTML . 103

176 The unix programming environment

`ftp' program . 28

FTP resources, �nding . 30

Fully quali�ed name . 161

G
`g++' . 29

`gcc' . 29

`gdb' debugger . 29

getenv() function . 125

getgrnam() . 160

gethostbyname() . 153, 161

gethostent() . 160

getnetgrent() . 160

getpwnam() . 160

getpwuid() . 160

getservbyname() . 160

getservbyport() . 160

Getting command output into a string 25

`ghostscript' "GNU postscript" interpreter . . . 30

`ghostview' postscript previewer 30

gif . 30

Global variables . 22

Global variables in csh . 42

Global variables in sh . 63

Granting permission . 27

groups . 37

H
Hard links . 12, 13

Help function for commands 8

Hierarchy, �le . 11

`hostname' command . 29

Hypertext . 30

I
I/O streams . 10

`if' in perl . 81

if..then..else in csh . 53

if..then..else..fi in sh. 67

`IFS' variable in sh . 70

INADDR_ANY . 151

Include �le search path . 118

Include �les . 118

Index nodes . 13

Information about �le properties 127

init . 19

inodes . 13

Input in csh . 57

Input in sh . 68

Input over many lines . 45

Inserting a command into a string. 25

Internet relay chat . 28

Internet resources . 30

Interpretation of values in perl 77

Interrupt handler in sh . 71

ioctl(). 145

`IRC' . 28

Iterating over �les . 83

Iteration over arrays . 82

J
Job control . 47

Job numbers in csh . 50

Job, moving to background 50

Joker notation . 22

jpg . 30

jsh. 25

K
kernel . 9

Kernel . 12

Kernighan and Ritchie C . 116

`kill' command . 50

ksh . 10, 25

L
`latex' . 30

`ld' loader/linker . 29

`ld.so.cache' . 119

`ldconfig' . 119

`less' command . 27

lex. 10

`lex' . 115

Lexer . 147

libc . 117

libcurses . 117

libm . 117

Library path for C loader 117

Limitations of shell programs 73

Links in C . 127

Concept Index 177

Links, where do they point? 127

listen() . 155

Little endian . 151

ln -s . 13

Local variables . 22

Local variables in csh . 42

Local variables in perl . 87

Local variables in sh . 63

`locate' command . 27

Logging on . 15

Login environment . 19

Login evironment . 41

Long �le listing . 37

Long lines, continuing . 53

Loops and list separators . 70

Loops in csh. 56

Loops in sh . 69

`lp' command . 27

`lpq' . 27

`lpr' command . 27

`lpstat'. 27

ls -l . 37

`ls command'. 26

lstat(). 127

M
MacIntosh. 6

Macros for stat . 128

Mail clients . 28

make . 10

Make rules for C++ . 124

Make software script . 55

Making a script . 51

Making directories . 8

Making scripts in sh . 65

Masking programs executable 39

Matching �lenames . 22

Matching strings . 23

mc . 27

Mercury . 29

`mesg' . 28

Messages . 28

Mime types in W3 . 103

mkdir . 8

`mkdir' command . 26

`more' command . 27

`mosaic'. 30

Mounted �le systems . 29

Moving a job to the background 50

Moving �les . 26

Multiple C �les, compiling 117

Multiple screens . 34

`mv' command . 26

N
nc . 27

`ncftp' program . 28

`netstat' network statistics. 29

Network byte order . 151

Network databases . 159

Network information service 159

Never do in unix . 8

NFS and C support . 162

NIS . 159

nobody . 11

noclobber overwrite protection 44

noclobber variable. 44

`nslookup' command . 29

O
`open' command in perl . 84

opendir command . 126

Opening a pipe in C . 135

Operating system name . 29

Operators in csh . 54

Output to �le . 45

Output, sending to a �le . 43

P
Painting program . 30

Panic button . 51

Parameters in perl functions 87

Parser . 147

Parts of a �lename . 58

`passwd' �le . 88

`paste' . 75

Paste as a perl script . 84

`paste' command . 27

path . 9

path . 21

PATH . 9

Pattern matching in perl 93, 95

178 The unix programming environment

Pattern replacement in perl 93

PC windows . 6

perl . 6

Perl . 75

Perl variables and types . 76

Perl, strings and scalar . 77

Perl, truncating strings . 86

Permissions on �les . 37

Permissions, determining in C 128

`pico' . 26

Picture processing . 30

`pine' mailer . 28

Pipe . 45

Pipes . 43

Pipes in C . 135

Piping to more to prevent scrolling 45

popen(). 135

POSIX standard . 117

Postscript viewers . 30

Printer queue. 27

Printer status . 27

`PRINTER' variable. 27

Printing a �le . 27

Printing multiple lines . 45

Procedures and subroutines in sh 71

Process. moving to background 50

Processes . 48

Prompt, rede�ning . 41

Protecting �les from overwrite with `>' 44

Protection bits . 37

`ps' command . 29

R
readdir command . 126

readlink() . 127

recv() . 154

Rede�ning list separator in sh 70

Redirecting stdio in sh . 64

Redirection of stdio . 43

Regular expressions . 23

Reliable socket protocol . 157

Renaming �les . 26

repeat . 56

Result of a command into a string 25

Return codes . 66

`rlogin'. 26

rlogin program . 31

`rm' command . 26

`rmail' in emacs . 28

`rmdir' command . 26

Role of C in unix . 10

Root privileges . 73

root user . 11

rpcgen . 10

`rpcinfo' . 29

`rsh' . 26

S
s-bit . 39, 40

Scalar variables in perl . 77

scheme . 29

`screen'. 26

Screens . 34

Script aliases in W3 . 104

Script, making . 51

Scripts in sh, making . 65

Searching and replacing in perl (example) 94

`sed' as a perl script . 93

`sed' batch editor . 75

`sed' editor . 27

`sed', search and replace . 55

send() . 154

Sending messages . 28

set command . 42

setenv command . 42

setgid bit . 39

Setting the prompt . 41

Setting up the C shell . 41

Setting up the x environment 32

setuid bit . 39

SetUID scripts. 73

`sh' . 10

sh . 25

sh5 . 25

Shared libraries . 118

shell . 6, 9

Shell commands and C library calls 10

hShells, variousi . 25

`shelltool' . 26

`shift' and arrays . 79

`shift' and arrays in perl . 79

shift operator on strings . 65

`showmount' . 29

Signal handler in sh . 71

Concept Index 179

Single and double quotes . 47

`sleep' command . 62

socket() . 153

Sockets . 151

Soft links . 13

`Sonar' ping . 30

Spelling checker . 30

`split' and arrays . 79

`split' command . 79

Splitting C into many �les. 117

Splitting output to several �les 45

Standard error. 10

Standard I/O in perl . 84

Standard I/O in sh . 64

Standard I/O, redirection . 43

Standard input . 10

Standard output . 10

Starting . 132

Starting shell jobs . 50

stat() . 127

Static linking . 118

Statistics about a �le . 127

Sticky bit . 40

Strings in perl . 77

`stty' and switching o� term echo 88

Subroutines in perl . 86

Subshells and () . 52

Su�x rules in Make�les . 121

superuser . 11

Suspending a job . 50

Swapping text strings . 55

switch..case in csh . 53

Symbolic links . 13

System 5 . 7

`System details' . 29

System identity and `uname' 55

System name . 29

System V . 7

T
t-bit . 40

hTABi completion key . 46

`talk' service . 28

`TCL' . 29

TCP/IP . 151

tcsh . 10, 25

`tee' command . 45

Teletype terminal . 31

telnet . 15

`telnet'. 26

Terminal echo and `stty' . 88

Terminals . 26

`test' in sh. 67

test programs. 9

test, don't call your program this 9

Testing �les . 53

Testing reponse from other hosts. 30

Tests and conditions in csh 53

Tests in sh . 66

`tex' . 30

`texinfo' system . 30

Text form of access bits . 38

Text formatting . 30

`textedit' . 26

The arguement vector in C 125

The domain name service 160

ti�. 30

Time and date. 30

Time stamp, updating . 26

Tk library . 115

`touch' command . 26

Traps in sh . 71

Truncating strings in perl . 86

tty . 31

`type' in DOS . 27

Types in perl . 76

U
umask variable . 39

`uname' command . 55

Unde�ning variables . 42

undelete . 9

UNIX . 5

UNIX history . 5

`unless' in perl . 81

`unlink' command . 26

unset command . 42

`until' . 69

Up arrow . 46

Updating �le time stamp . 26

User database support . 90

User environment . 19

`users' command . 28

180 The unix programming environment

V

Variables, global . 22

Variables, local . 22

`vi' . 26

Viewing a �le. 27

`vmstat' virtual memory stats 29

W

`w' command . 28

`wait.h' . 135

Waiting for child processes 135

`whereis' command . 27

which command . 21

while . 56

`while' in perl . 81

`while' in sh . 69

while loop in sh . 65

`who' command . 28

`whoami' command . 61

Wildcards . 19, 22

Windows on PC . 6

Wrapper functions . 10

Wrappers . 115

`write' command . 28

write example . 52

Writing a script . 51

WTERMSIG(status) . 135

X
X access control . 34

X display . 32, 33

X protocol . 32

X window system . 31

X windows . 115

X windows access . 33

X windows authenti�cation 33

X-windows . 19

`xarchie' client . 30

Xauthority mechanism . 34

`xedit' . 26

`xemacs'. 26

`xfig' drawing program . 30

xhost mechanism . 33

`xpaint' program . 30

`xrn' news reader . 30

`xterm' . 26

xterm program . 31

`xv' picture processor . 30

`xxgdb' . 29

Y
yacc . 10

`yacc' . 115, 147

Z
`zmail' client . 28

zsh . 25

i

Table of Contents

Foreword . 1

Welcome . 3

1 Overview . 5
1.1 What is unix? . 5

1.2 Flavours of unix . 7

1.3 How to use this reference guide . 7

1.4 NEVER-DO's in UNIX . 8

1.5 What you should know before starting . 9

1.5.1 One library: several interfaces 9

1.5.2 Unix commands are �les . 9

1.5.3 Kernel and Shell . 9

1.5.4 The role of C . 10

1.5.5 Stdin, stdout, stderr . 10

1.6 The superuser (root) and nobody . 11

1.7 The �le hierarchy . 11

1.8 Symbolic links . 13

1.9 Hard links . 13

2 Getting started . 15
2.1 Logging in . 15

2.2 Mouse buttons . 16

2.3 E-mail. 16

2.4 Simple commands . 17

2.5 Text editing and word processing . 17

3 The login environment . 19
3.1 Shells . 19

3.1.1 Shell commands generally . 20

3.1.2 Environment and shell variables 21

3.1.3 Wildcards . 22

3.1.4 Regular expressions . 23

3.1.5 Nested shell commands and \ 24

3.2 UNIX command overview . 25

3.2.1 Important keys . 25

3.2.2 Alternative shells . 25

3.2.3 Window based terminal emulators 26

3.2.4 Remote shells and logins . 26

3.2.5 Text editors . 26

3.2.6 File handling commands . 26

3.2.7 File browsing . 27

ii The unix programming environment

3.2.8 Ownership and granting access permission 27

3.2.9 Extracting from and rebuilding �les 27

3.2.10 Locating �les . 27

3.2.11 Disk usage. 28

3.2.12 Show other users logged on . 28

3.2.13 Contacting other users . 28

3.2.14 Mail senders/readers . 28

3.2.15 File transfer . 28

3.2.16 Compilers . 29

3.2.17 Other interpreted languages 29

3.2.18 Processes and system statistics 29

3.2.19 System identity . 29

3.2.20 Internet resources . 30

3.2.21 Text formatting and postscript 30

3.2.22 Picture editors and processors 30

3.2.23 Miscellaneous . 30

3.3 Terminals . 31

3.4 The X window system . 31

3.4.1 The components of the X-window system 31

3.4.2 How to set up X windows . 32

3.4.3 X displays and authority . 33

3.5 Multiple screens . 34

4 Files and access. 37
4.1 Protection bits . 37

4.2 chmod . 38

4.3 Umask . 39

4.3.1 Making programs executable 39

4.3.2 chown and chgrp . 39

4.3.3 Making a group . 39

4.4 s-bit and t-bit (sticky bit) . 40

5 C shell . 41
5.1 .cshrc and .login �les . 41

5.2 De�ning variables with set, setenv . 42

5.3 Arrays . 43

5.4 Pipes and redirection in csh . 43

5.5 `tee' and `script'. 45

5.6 Command history . 46

5.7 Command/�lename completion . 46

5.8 Single and double quotes . 47

5.9 Job control, break key, `fg', `bg' . 47

5.9.1 Unix Processes and BSD signals 48

5.9.2 Child Processes and zombies . 49

5.9.3 C-shell builtins: `jobs', `kill', `fg',`bg', break key

. 50

5.10 Scripts with arguments . 51

5.11 Sub-shells () . 52

iii

5.12 Tests and conditions . 53

5.12.1 Switch example: con�gure script 55

5.13 Loops in csh . 56

5.14 Input from the user . 57

5.15 Extracting parts of a pathname . 58

5.16 Arithmetic . 59

5.17 Examples . 59

6 Bourne shell . 63
6.1 .pro�le . 63

6.2 Variables and export . 63

6.3 Stdin, stdout and stderr . 64

6.4 Arithmetic in sh . 65

6.5 Scripts and arguments . 65

6.6 Return codes . 66

6.7 Tests and conditionals . 66

6.8 Input from the user in sh . 68

6.9 Loops in sh . 69

6.10 Procedures and traps . 71

6.11 setuid and setgid scripts . 73

6.12 Summary: Limitations of shell programming 73

6.13 Exercises . 74

7 Perl. 75
7.1 Sed and awk, cut and paste . 75

7.2 Program structure . 76

7.3 Perl variables . 76

7.3.1 Scalar variables . 77

7.3.2 The default scalar variable. 78

7.3.3 Array (vector) variables . 78

7.3.4 Special array commands . 78

7.3.5 Associated arrays . 79

7.3.6 Array example program . 80

7.4 Loops and conditionals . 81

7.4.1 The for loop . 82

7.4.2 The foreach loop . 82

7.4.3 Iterating over elements in arrays 82

7.4.4 Iterating over lines in a �le . 83

7.5 Files in perl . 84

7.5.1 A simple perl program . 85

7.5.2 == and `eq' . 86

7.5.3 chop . 86

7.6 Perl subroutines . 86

7.7 die - exit on error . 87

7.8 The stat() idiom . 87

7.9 Perl example programs . 88

7.9.1 The passwd program and `crypt()' function 88

7.9.2 Example with `fork()' . 89

iv The unix programming environment

7.9.3 Example reading databases . 90

7.10 Pattern matching and extraction . 92

7.11 Searching and replacing text . 93

7.12 Example: convert mail to WWW pages 97

7.13 Generate WWW pages automagically 98

7.14 Other supported functions . 100

7.15 Summary . 101

7.16 Exercises . 101

7.17 Project . 101

8 WWW and CGI programming 103
8.1 Permissions . 103

8.2 Protocols . 103

8.3 HTML coding of forms . 103

8.4 Perl and the web . 105

8.4.1 Interpreting data from forms 105

8.4.2 A complete guestbook example in perl 109

8.5 PHP and the web . 111

8.5.1 Embedded PHP . 111

8.5.2 PHP and forms . 112

9 C programming . 115
9.1 Shell or C? . 115

9.2 C program structure . 115

9.2.1 The form of a C program. 115

9.2.2 Macros and declarations . 116

9.2.3 Several �les . 116

9.3 A note about UNIX system calls and standards 117

9.4 Compiling: `cc', `ld' and `a.out' . 117

9.4.1 Libraries and `LD_LIBRARY_PATH' 117

9.4.2 Include �les . 118

9.4.3 Shared and static libraries . 118

9.4.4 Knowing about important paths: directory structure

. 119

9.5 Make . 119

9.5.1 Compiling large projects . 120

9.5.2 Make�les . 121

9.5.3 New su�x rules for C++ . 124

9.6 The argv, argc and envp paramters . 125

9.7 Environment variables in C . 125

9.8 Files and directories . 126

9.8.1 opendir, readdir . 126

9.8.2 stat() . 127

9.8.3 lstat and readlink . 127

9.9 stat() test macros . 128

9.9.1 Example �ling program . 129

9.10 Process control, fork(), exec(), popen() and system . . 130

9.11 A more secure popen() . 136

v

9.12 Traps and signals . 141

9.13 Regular expressions . 142

9.14 DES encryption . 143

9.15 Device control: ioctl . 145

9.16 Database example (Berkeley db) . 146

9.17 Text parsing tools: `lex' and `yacc' 147

9.18 Exercises . 150

10 Network Programming 151
10.1 Socket streams . 151

10.2 Multithreading a server . 158

10.3 System databases . 159

10.4 DNS - The Domain Name Service . 160

10.4.1 gethostbyname() . 161

10.5 C support for NFS . 162

10.6 Exercises . 162

Appendix A Summary of programming idioms.
. 163

Command and Variable Index 169

Concept Index . 173

vi The unix programming environment

