
CS167 Programming Assignment 1 Shell

CS167 Programming Assignment 1: Shell

Assignment Out: Sep. 5, 2007
Helpsession: Sep. 11, 2007 (8:00 pm, Motorola Room, CIT 165)
Assignment Due: Sep. 17, 2007 (11:59 pm)

1 Introduction

In this assignment you will be writing a real live UNIX shell. A shell is typically used to allow users
to run other programs in a friendly environment, often offering features such as command history
and job control. Shells are also interpreters, running programs written using the shell’s language
(shell scripts).

Your shell will have the same basic functionality as the shells you are used to working in (e.g.,
C shell (csh/tcsh) or bash) — meaning it will allow the user to type in the name of an executable,
with arguments, and then execute this program. The shell will also provide a few built-in commands,
such as cd, as well as some basic features such as file redirection. You don’t need to implement
anything not described in this handout (eg. history, job control, tab completion).

Your shell will be written and tested under Linux.
To run the TA shell demo, run /course/cs167/demo/shell/shell.

2 The Assignment

Your job is fairly simple: your shell must display a prompt and wait until the user types in a line of
input. It must then do some simple text parsing on the input and take the appropriate action. For
example, some input is passed on to built-in shell commands, while other inputs specify external
programs to be executed by your shell.

Additionally, the command line may contain some special characters which will correspond to
file redirection. The shell must set up the appropriate files to deal with this. As you know, users

are far from perfect; your shell should have good error-checking.

2.1 The Filesystem

Crucial to understanding how your shell will work is a working knowledge of the UNIX VFS (Virtual
Filesystem) model.

In the VFS model, there is a root filesystem denoted as “/”, and zero or more mounted filesys-
tems which reside at mount points, like “/dev”. All filesystems expose an internal structure of
directories and files: within the root filesystem there might be subdirectories such as “/bin”,

v1.0

CS167 Programming Assignment 1 Shell

“/home”, “/home/joeuser”, and “/home/joeuser/src”. There are also files within these directo-
ries, like sh.c and README. Mounted filesystems behave just like root filesystems except that names
of files within the filesystem are prefixed with the mount point.

The effect of all this is to abstract the particular way of accessing a file (the on-disk structure)
from the fact that a file exists. In fact, some filesystems might have no on-disk structure at all, and
simply provide names that behave like files for other purposes. For instance, objects in “/dev” are
not real files; they simply provide a file-like interface.

2.2 Files, File Descriptors, Terminal I/O

To explain how files are represented in UNIX, examine the open system call, which opens a file:
int open (const char *path, int oflag, mode t mode);

path is an absolute (starting with ’/’) or relative pathname of the file; oflag is a combination
of the access modes and status flags described in the open(2) man page; mode is the permission
used if the file is created.

open returns an integer which is a file descriptor (sometimes referred to in shorthand as an
“fd”). File descriptors are references to the open file in user mode. Instead of having access to the
kernel-level file struct, users make system calls (like read) that take file descriptors.

Each process is initially “given” (set up by its parent) three standard file descriptors for input,
output, and error: file descriptors 0, 1, and 2, respectively. You will start your shell from your
regular UNIX shell (eg. tcsh), which will set these first three file descriptors, using code similar to
this:

if (!fork())

{

/* now in the child process */

close(0);

close(1);

close(2);

open("/dev/tty", O_RDONLY);

open("/dev/tty", O_WRONLY);

open("/dev/tty", O_WRONLY);

execve("/bin/sh", 0, 0);

}

Since file descriptors are assigned in increasing numerical order, we are assured that fds 0,
1, and 2 are assigned to the corresponding terminal. This in turn means that to write to the
terminal, all you need to do is call write(1, "foo", 3);. If you are having trouble remembering
the file descriptor numbers for the standard streams, you can use STDIN FILENO, STDOUT FILENO,
and STDERR FILENO (after including unistd.h), which are macros for 0, 1, and 2, respectively.

v1.0

CS167 Programming Assignment 1 Shell

2.3 Executing a program

Executing a program in UNIX takes place in several steps. The fork(2) system call creates a new
child process which is a replica of the parent, and begins execution at the point that the call to
fork(2) returns. fork(2) returns 0 to the child process, and the child’s process id (also known as
a pid) to the parent.

The execve(2) system call begins the execution of a new program and if it succeeds it will not
return. It is passed the path of the the program to be executed, an argument list (argv), and a
list of environment strings (envp). argv and envp are null-terminated arrays of pointers to strings
(character arrays); the command

/bin/echo Hello world!

would have an argv that could be implemented like this:

char *argv[4];

argv[0] = "/bin/echo";

argv[1] = "Hello";

argv[2] = "world!";

argv[3] = NULL;

The environment strings envp are a set of strings of the form “variable=value”. Processes
typically access these through the libc function getenv(3); type /usr/bin/env in a shell to list
all the environment variables set in your shell (and passed to /usr/bin/env via execve(2)). You
are not required to keep track of environment variables for this assignment, (just pass NULL for
envp1) but you may implement setting and unsetting them for extra credit.

Here is an example of forking and executing a new process:

if (!fork())

{

/* now in the child process */

char *envp[] = { NULL };

execve(argv[0], argv, envp);

/* we won’t get here unless execve failed */

if (errno == ENOENT) {

fprintf(stderr, "sh: command not found: \%s\n", argv[0]);

exit(1);

} else {

1This may break some programs. Another possibility is to have your main function take not only the standard argc

and argv, but also a third argument, char *envp[] which will get the environment of the program which executes
your shell (probably the real shell you use in your terminal). You can then pass this directly along to execve(2).

v1.0

CS167 Programming Assignment 1 Shell

fprintf(stderr, "sh: execution of %s failed: \%s\n",

argv[0], strerror(errno));

exit(1);

}

}

/* continue parent process execution */

2.4 Built-In Shell Commands

In addition to supporting the spawning of external programs, your shell will support a few internal
(built-in) commands. When a built-in command is input, your shell should make the necessary
system calls to handle the request and return control back to the user. The following is a list of
the built-in commands that your shell should provide:

• cd dir: change the current working directory.

• ln src dest: makes a hard link to a file.

• rm file: remove directory entry.

• exit: quit the shell.

Note that we are only looking for the default behavior on these commands; you don’t need to
implement rm -r or ln -s. You also do not need to support multiple arguments to rm or multiple
commands on a single line. Your shell may print out an error message if the user enters a malformed
command.

2.5 UNIX system calls for built-ins

To implement these commands, you will need to understand the functionality of several Linux
system calls; you can (and should!) read the man pages in the lab. 2 It is highly recommended
that you examine the man pages for these syscalls before beginning to implement the shell built-ins.

int open(const char *path, int oflag, mode_t mode);

int close(int fd);

int chdir(const char *path)

int link(const char *existing, const char *new);

int unlink(const char *path);

2Type man 2 syscall to read the man pages for system calls.

v1.0

CS167 Programming Assignment 1 Shell

2.6 File redirection

From the sh(1) man page:
A command’s input and output may be redirected using a special notation interpreted by the

shell.3 The following may appear anywhere in a simple-command or may precede or follow a
command and are not passed on as arguments to the invoked command.

• < word Use file word as standard input (file descriptor 0).

• > word Use file word as standard output (file descriptor 1). If the file does not exist, it is
created; otherwise, it is truncated to zero length.4

• >> word Use file word as standard output. If the file exists, output is appended to it5;
otherwise, the file is created.

You must code your parser to support file redirection and concatenation, with error checking.
For example, if the shell fails to create the file to which output should be redirected, the shell
must report this error and abort execution of the specified program. If multiple input or output
redirections appear, that is also an error (ie. it is illegal to redirect standard input twice, it’s
perfectly legal to redirect input and output). To understand the details of file redirection, it will
be helpful to experiment with redirection in your favorite UNIX shell6 (whose error messages you
may borrow for your own shell).

3 Parsing the command line

A significant part of your implementation will most likely be the command line parsing. Redirection
symbols may appear anywhere on the command line, and the file name appears as the next word
after the redirection symbol. One algorithm for parsing the command line is as follows:

• Scan through the line for redirection symbols, keeping track of the input and output file
names if they exist. Check for errors such as multiple redirection or missing file names (i.e.
a redirect token that is not followed by a file name) at this point.

• Remove all traces of redirection from the command line (i.e. replace the relevant characters
with blanks).

• Split up the line into words. The first word will be the command, and each subsequent word
will be an argument to the command.

3You don’t have to do redirection on builtin commands (not that it would be very useful to redirect the output of
ln anyway...)

4See the description of the O CREAT and O TRUNC flags in the open(2) man page.
5See the description of the O APPEND flag in the open(2) man page.
6In Linux’s csh and tcsh, you can set the noclobber flag, causing redirecting to a file which exists to be an error.

You may choose to implement this behavior or the truncation behavior described above, just tell us which you did
in your README.

v1.0

CS167 Programming Assignment 1 Shell

Most symbols and words are separated by one or more spaces or tabs. Redirection characters
may be separated from arguments by zero or more spaces or tabs. There need not be spaces or tabs
before the first word on the line. Special characters such as control characters should be treated
just like alphanumeric characters and should not crash your shell.

Be very careful to check for error conditions at all stages of command-line parsing. Since the
shell is controlled by a user, it is possible to receive bizarre input. For example, your shell should
be able to handle all of these errors (as well as many others):

/bin/cat < foo < gub ERROR - can’t have 2 input redirects on one line.
/bin/cat < ERROR - no redirection file specified.
> gub ERROR - no command specified. Make sure file gub is not overwritten.

Your shell also has to correctly handle bizarre yet correct input:

< bar /bin/cat OK - redirection can appear anywhere in the input.
[TAB]/bin/ls <[TAB] foo OK - any amount of whitespace is acceptable.
/bin/gub -p1 -p2 foobar OK - make sure parameters are parsed correctly.
cat>bar<README OK - no whitespace between redirection symbols is acceptable.

4 Use of external functions

You should use the read(2) and write(2) system calls to read and write from file descriptors 0,
1, and 2. Please don’t use C++ iostreams cin, cout or cerr or C stdio (fopen, fread, etc); part of
the purpose of this assignment is to learn about the system calls you’ll be implementing later on
in the semester.

You may use almost all the library calls defined in string.h to perform string or buffer ma-
nipulation in your shell code. You may also use any syscalls (functions with section 2 manpages)
your little heart desires. Do not use floating point numbers (don’t ask). If you have any questions
about functions that you are able to use, please post on the newsgroup.

In order to avoid confusion, here is a list of the external functions allowed. Note that you can’t
use strtok(); part of the assignment is to practice C string manipulation.

open printf (and variants) isalnum

close str(n)cpy isalpha

chdir str(n)cat iscntrl

link str(n)cmp isdigit

unlink str(r)chr islower

read str(c)spn isgraph

write strpbrk isprint

fork strstr ispunct

execve strlen isspace

wait strerror isupper

exit memcpy isxdigit

v1.0

CS167 Programming Assignment 1 Shell

malloc memmove tolower

free memcmp toupper

assert memchr

perror memset

Another important aspect of parsing the command line is knowing how to handle Ctrl-D. When
the user enters some text on the command line followed by Ctrl-D, handle it as a newline. If the
user does not enter anything but Ctrl-D, the shell should exit.

5 Code Exchange

To get started, copy the /course/cs167/asgn/shell directory and start hacking sh.c. To run
your program, type ./sh. Note the ’.’ before ’sh’. To debug your program, type gdb sh, and at
the (gdb) prompt, type run.

You need to write a simple README, documenting any bugs you have in your code, any extra
features you added, and anything else you think we should know about your shell.

You should hand in your shell by running “make clean; /course/cs167/bin/cs167 handin

shell” from the directory containing your code.

6 Extra credit

Here are some suggestions for extra credit:

• PATH, either as an environment variable, or just as a hard coded search path.

• rm -r

• environment variables (setenv, printenv, and passing the environment to processes via
execve

• pwd, though you must use the getdents(2) system call (not pwd) for it to count. This is a
bit tricky, but quite interesting. Yes, you must use getdents, not even readdir.

v1.0

