
The Concept of Dynamic
Analysis

Thomas Ball

Bell Laboratories
Lucent Technologies

Dynamic Analysis vs Static
Analysis
 Static Analysis

 Examines a program’s text to derive properties
hold for all executions

 Dynamic Analysis
 Examines the running program to derive

properties hold for one or more executions
 Detects violations of properties
 Provides useful information

Dynamic Analysis vs Static
Analysis

 Complementary Techniques
 Completeness

 Dynamic analysis generate “dynamic program invariants”
for the observed set of executions

 Static analysis helps to determine “dynamic program
invariants” true or not for all program executions

 Cause of disagree
 Not sufficient executions for dynamic analysis
 Examining infeasible paths in static analysis

Dynamic Analysis vs Static
Analysis
 Complementary Techniques (cont)

 Scope
 Dynamic analysis potentially discovers “dependencies at

a distance”
 Static analysis has difficulties (restricted in scope)to do

so

 Precision
 Dynamic analysis examines the concrete domain of

program execution
 Static analysis abstracts over this domain to ensure

termination of the analysis, losing information from start.

Usefulness of Dynamic
Analysis

 Precision of information
 Particular execution to collect precise

information to address particular problems

 Dependence on program inputs
 Relate program input and output to

program behavior

Two Dynamic Analysis

 This paper proposes two dynamic
analysis
 Frequency Spectrum Analysis (FSA)
 Coverage Concept Analysis (CCA)
 Both are based on program profile

Frequency Spectrum Analysis
(FSA)

 Goal
 Analyzing the frequencies of the program

entities in a single execution to help
programmers to
 decompose a program;
 identify related computations;
 find computations related to specific input and

output characteristic of the program

Frequencies & Program
Behavior

 Low Frequencies vs High Frequencies
 Execution frequencies of program entities

implies their place in the hierarchy of
program abstraction

 Example: sorting module
 Interface procedures execute many fewer times

than private procedures that invoke one anther
to perform sorting operation

Frequency & Program
Behavior (cont)
 Related Frequencies and Frequency Clusters

 What are Frequency clusters
 Put entities together through common frequency

and implies their dynamic relationship

 Specific Frequency
 Frequencies related to input/output implies parts

of program responsible for input/output
 Example

 An enumeration of record as output might imply the
frequency of a program entity in size of the enumeration

Case Study

 Apply FSA to profile of an example
(obfuscated C program)

 Restructuring a C program based on the
result of FSA

Example Input & Output

 Example: take no input, print out a
poem “The Twelve Days of Christmas”

Example Source Code

 Obfuscated C Program

Program Behavior

 Path Profile

Other Version of Source Code

 Readable Version

Profile Information

 Summary information

Output Structure
 Poem’s nature structure

 12 verses for 12 days
 26 unique strings

 3 common strings, “on the”, “day of Christmas…”, “and a partridge”
 12 strings for ordinals (first, second, third, …, twelfth)
 11 strings for second through twelve gifts

 66 occurrences of presents other than “partridge in a pear tree”
 0+1+2+…+11 = 66

 114 strings printed
 12 occurrences of 3 common strings (12*3=36)
 12 ordinals
 66 non-partridge gifts

 2358 characters printed

Output & Program Behavior

 Correlation between the poem’s nature
and program profile data
 Execution count (frequency) implies

responsible part of the program
 Example

 Main:7 path execution 2358 implies this path is
corresponding to 2358 characters printing

 Idea to reconstruct the C program

FSA on Program Profile
 Closer Examination on The Code and Table 2

 6 path cluster groups

 Path main:0 (initialization, execute once)
 Paths main:19, main:22, main:23 (1+1+10 = 12 verses) make up the

outer loop;
 Paths main:9, main:13 (11+55 = 66 non-partridge-gifts within a verse)

make up the inner loop;
 Paths main:2, main:3(114, 114) print out the 114 strings;
 Paths main:1, main:7 (2358, 2358) print out 2358 characters.

Restructure
 Restructure Program based on the FSA

 main (path main:0)
 initialization

 outer_loop (paths main:19, main:22, main:23)
 12 verses

 inner_loop (paths main:9, main:13)
 66 non-partridge-gifts within a verse

 print_string (paths main:2, main:3)
 114 strings

 output_chars (paths main:1, main:7)
 print out 2358 characters

 translat_and_put_char (path main:5)
 skip_n_strings (path main:4)

 Source code not shown

Result

 Restructured program profile (table 3)
and old program profile (table 2) in
next slide

 The restructured program has the exact
output with the original program

Comparison of Profiles

Summary

 FSA features
 Partition the program by levels of abstract

based on frequency;
 Identify related computation based on

frequency cluster;
 Find computation related to the program’s

behavior based on specific frequency.

Unanswered Questions

 Shortcoming of the example
 Direct relationship between the program’s

output and program’s behavior
 Size of the profile
 No input

Coverage Concept Analysis (CCA)

 Concept analysis
 Techniques to identify groups of objects that

have common attributes
 Input to concept analysis (binary relation)

 Example (Test coverage table)

Definition
 Pair (T, E), where T is a set of tests and E is

a set of program entities, is a concept if
every test in T cover all entities in E, and no
test outside T covers all entities in E.

 Concept determine maximal sets of tests
covering identical entities(and maximal sets
of entities covered by identical tests)

Example

Partial Order

 Partial order

 Concept lattice

Concept Lattice

Example

Concept Lattice Properties
 If test t is in a concept c, the t is in any

concept greater than c . If entity e is in a
concept c, then e is in any concept less than
c.

 For every test t, there is a unique least
concept c in which it appears, denoted by
lcont(t). For every entity e, there is a unique
greatest concept c in which it appears,
denoted by gcont(e).

Least Concept and Greatest
Concept

 Example

CCA Contribution

 Analog to Static Control Flow
Relationships
 Domination, Postdomination and Region

 Identifies “Dynamic Control Flow
Invariant”

Domination, Postdomination &
Control Flow Implication

 Definition of domination and
postdomination
 Entity e is said to dominate entity f if

every path from program entry to f
includes e.

 Entity f is said to postdominate entity e
if every path from e to program exit
includes entity f.

Domination, Postdomination &
Control Flow Implication(cont)

 Control Flow Implication
 If entity f is in a concept greater than or

equal to gcon(e), then the execution of e
dynamically implies the execution of f,
which means in this test f dynamically
dominate e.

Regions

 If entity e dominate f and f
postdominate e, e and f are in the
same region.

 By the concept lattice, if gcon(e) =
gcon(f) then e and f are in the same
dynamic region.

Dynamic & Static Information

 Dynamic information may not imply
static information.

 Static information always implies
dynamic information.

Conclusion

 FSA and CCA can aid in the tasks of
program comprehension, program
restructuring and new test
development.

