
The Concept of Dynamic
Analysis

Thomas Ball

Bell Laboratories
Lucent Technologies

Dynamic Analysis vs Static
Analysis
 Static Analysis

 Examines a program’s text to derive properties
hold for all executions

 Dynamic Analysis
 Examines the running program to derive

properties hold for one or more executions
 Detects violations of properties
 Provides useful information

Dynamic Analysis vs Static
Analysis

 Complementary Techniques
 Completeness

 Dynamic analysis generate “dynamic program invariants”
for the observed set of executions

 Static analysis helps to determine “dynamic program
invariants” true or not for all program executions

 Cause of disagree
 Not sufficient executions for dynamic analysis
 Examining infeasible paths in static analysis

Dynamic Analysis vs Static
Analysis
 Complementary Techniques (cont)

 Scope
 Dynamic analysis potentially discovers “dependencies at

a distance”
 Static analysis has difficulties (restricted in scope)to do

so

 Precision
 Dynamic analysis examines the concrete domain of

program execution
 Static analysis abstracts over this domain to ensure

termination of the analysis, losing information from start.

Usefulness of Dynamic
Analysis

 Precision of information
 Particular execution to collect precise

information to address particular problems

 Dependence on program inputs
 Relate program input and output to

program behavior

Two Dynamic Analysis

 This paper proposes two dynamic
analysis
 Frequency Spectrum Analysis (FSA)
 Coverage Concept Analysis (CCA)
 Both are based on program profile

Frequency Spectrum Analysis
(FSA)

 Goal
 Analyzing the frequencies of the program

entities in a single execution to help
programmers to
 decompose a program;
 identify related computations;
 find computations related to specific input and

output characteristic of the program

Frequencies & Program
Behavior

 Low Frequencies vs High Frequencies
 Execution frequencies of program entities

implies their place in the hierarchy of
program abstraction

 Example: sorting module
 Interface procedures execute many fewer times

than private procedures that invoke one anther
to perform sorting operation

Frequency & Program
Behavior (cont)
 Related Frequencies and Frequency Clusters

 What are Frequency clusters
 Put entities together through common frequency

and implies their dynamic relationship

 Specific Frequency
 Frequencies related to input/output implies parts

of program responsible for input/output
 Example

 An enumeration of record as output might imply the
frequency of a program entity in size of the enumeration

Case Study

 Apply FSA to profile of an example
(obfuscated C program)

 Restructuring a C program based on the
result of FSA

Example Input & Output

 Example: take no input, print out a
poem “The Twelve Days of Christmas”

Example Source Code

 Obfuscated C Program

Program Behavior

 Path Profile

Other Version of Source Code

 Readable Version

Profile Information

 Summary information

Output Structure
 Poem’s nature structure

 12 verses for 12 days
 26 unique strings

 3 common strings, “on the”, “day of Christmas…”, “and a partridge”
 12 strings for ordinals (first, second, third, …, twelfth)
 11 strings for second through twelve gifts

 66 occurrences of presents other than “partridge in a pear tree”
 0+1+2+…+11 = 66

 114 strings printed
 12 occurrences of 3 common strings (12*3=36)
 12 ordinals
 66 non-partridge gifts

 2358 characters printed

Output & Program Behavior

 Correlation between the poem’s nature
and program profile data
 Execution count (frequency) implies

responsible part of the program
 Example

 Main:7 path execution 2358 implies this path is
corresponding to 2358 characters printing

 Idea to reconstruct the C program

FSA on Program Profile
 Closer Examination on The Code and Table 2

 6 path cluster groups

 Path main:0 (initialization, execute once)
 Paths main:19, main:22, main:23 (1+1+10 = 12 verses) make up the

outer loop;
 Paths main:9, main:13 (11+55 = 66 non-partridge-gifts within a verse)

make up the inner loop;
 Paths main:2, main:3(114, 114) print out the 114 strings;
 Paths main:1, main:7 (2358, 2358) print out 2358 characters.

Restructure
 Restructure Program based on the FSA

 main (path main:0)
 initialization

 outer_loop (paths main:19, main:22, main:23)
 12 verses

 inner_loop (paths main:9, main:13)
 66 non-partridge-gifts within a verse

 print_string (paths main:2, main:3)
 114 strings

 output_chars (paths main:1, main:7)
 print out 2358 characters

 translat_and_put_char (path main:5)
 skip_n_strings (path main:4)

 Source code not shown

Result

 Restructured program profile (table 3)
and old program profile (table 2) in
next slide

 The restructured program has the exact
output with the original program

Comparison of Profiles

Summary

 FSA features
 Partition the program by levels of abstract

based on frequency;
 Identify related computation based on

frequency cluster;
 Find computation related to the program’s

behavior based on specific frequency.

Unanswered Questions

 Shortcoming of the example
 Direct relationship between the program’s

output and program’s behavior
 Size of the profile
 No input

Coverage Concept Analysis (CCA)

 Concept analysis
 Techniques to identify groups of objects that

have common attributes
 Input to concept analysis (binary relation)

 Example (Test coverage table)

Definition
 Pair (T, E), where T is a set of tests and E is

a set of program entities, is a concept if
every test in T cover all entities in E, and no
test outside T covers all entities in E.

 Concept determine maximal sets of tests
covering identical entities(and maximal sets
of entities covered by identical tests)

Example

Partial Order

 Partial order

 Concept lattice

Concept Lattice

Example

Concept Lattice Properties
 If test t is in a concept c, the t is in any

concept greater than c . If entity e is in a
concept c, then e is in any concept less than
c.

 For every test t, there is a unique least
concept c in which it appears, denoted by
lcont(t). For every entity e, there is a unique
greatest concept c in which it appears,
denoted by gcont(e).

Least Concept and Greatest
Concept

 Example

CCA Contribution

 Analog to Static Control Flow
Relationships
 Domination, Postdomination and Region

 Identifies “Dynamic Control Flow
Invariant”

Domination, Postdomination &
Control Flow Implication

 Definition of domination and
postdomination
 Entity e is said to dominate entity f if

every path from program entry to f
includes e.

 Entity f is said to postdominate entity e
if every path from e to program exit
includes entity f.

Domination, Postdomination &
Control Flow Implication(cont)

 Control Flow Implication
 If entity f is in a concept greater than or

equal to gcon(e), then the execution of e
dynamically implies the execution of f,
which means in this test f dynamically
dominate e.

Regions

 If entity e dominate f and f
postdominate e, e and f are in the
same region.

 By the concept lattice, if gcon(e) =
gcon(f) then e and f are in the same
dynamic region.

Dynamic & Static Information

 Dynamic information may not imply
static information.

 Static information always implies
dynamic information.

Conclusion

 FSA and CCA can aid in the tasks of
program comprehension, program
restructuring and new test
development.

