The Concept of Dynamic

!'_ Analysis

Thomas Ball

Bell Laboratories
Lucent Technologies

Dynamic Analysis vs Static

i Analysis

= Static Analysis
= Examines a program’s text to derive properties
hold for all executions
= Dynamic Analysis
= Examines the running program to derive
properties hold for one or more executions
= Detects violations of properties
= Provides useful information

Dynamic Analysis vs Static
Analysis

= Complementary Techniques

= Completeness

= Dynamic analysis generate “dynamic program invariants”
for the observed set of executions

= Static analysis helps to determine “dynamic program
Invariants” true or not for all program executions

= Cause of disagree
Not sufficient executions for dynamic analysis
Examining infeasible paths in static analysis

Dynamic Analysis vs Static
Analysis

= Complementary Techniques (cont)

= Scope
= Dynamic analysis potentially discovers “dependencies at
a distance”
= Static analysis has difficulties (restricted in scope)to do
SO
= Precision

= Dynamic analysis examines the concrete domain of
program execution

= Static analysis abstracts over this domain to ensure
termination of the analysis, losing information from start.

Usefulness of Dynamic

i Analysis

s Precision of information

= Particular execution to collect precise
Information to address particular problems

= Dependence on program inputs

= Relate program input and output to
program behavior

i Two Dynamic Analysis

= This paper proposes two dynamic
analysis
= Frequency Spectrum Analysis (FSA)
= Coverage Concept Analysis (CCA)
= Both are based on program profile

Frequency Spectrum Analysis

i (FSA)

= Analyzing the frequencies of the program
entities in a single execution to help
programmers to
= decompose a program;
« Identify related computations;

= find computations related to specific input and
output characteristic of the program

Frequencies & Program

i Behavior

= Low Frequencies vs High Frequencies

= Execution frequencies of program entities
Implies their place in the hierarchy of
program abstraction

= Example: sorting module

= Interface procedures execute many fewer times
than private procedures that invoke one anther
to perform sorting operation

Frequency & Program
i Behavior (cont)

= Related Frequencies and Frequency Clusters
= What are Frequency clusters
= Put entities together through common frequency
and implies their dynamic relationship
= Specific Frequency

= Frequencies related to input/output implies parts
of program responsible for input/output

= Example

= An enumeration of record as output might imply the
frequency of a program entity in size of the enumeration

i Case Study

= Apply FSA to profile of an example
(obfuscated C program)

= Restructuring a C program based on the
result of FSA

i Example Input & Output

= Example: take no input, print out a
poem “The Twelve Days of Christmas”

On the first day of Christmas my true love gave to me
a partridge in a pear tree.

On the second day of Christmas my true love gave to me
two turtle doves
and a partridge in a pear tree.

On the twelfth day of Christmas my true love gave to me

twelve drummers drumming, eleven pipers piping, ten lords a-leaping,
nine ladies dancing, eight maids a-milking, seven swans a-swimming,
six geese a-laying, five geold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

Fig. 5. Partial output of the obfuscated C program.

i Example Source Code

= Obfuscated C Program

#include <stdio.h>

main(t,_,a}char*a;{
return!0<t?t<3?main(-79,-13,a+main(~-87,1~_,main(-86,0,a+1)+a)):
1,t<_?main(t+1,_,a):3,main(~-94,-27+t ,a) &kt==27 <137

main(2,_+1,"%s %d %d\n"):9:16:t<07t<-72%main{_,t,

"Qn’+,#' /o{Jwt/wkcdnx/+, {Jr/*de}+,/*{*+, [u{li+, /utiqhnt, /#{1+, /n{n+,/+én+, /#\
s#qint, /+k#; ¥+, /'r 'de’3 HutK wK:+)ed’ (do#’l \

q#?+d’K#!/+k#t;q# ' r}eKK#}v' r}eKK{nl]’/#;#q#n’) {)#}u’) {){nl]’/+#n’ ;d}rv’ i;# \
){nl]!/n{n#’; r{#w’r nc{nl]’/#{2,+'K {xw’ iK{;[{nl]’/w#qg#n’vk nw’ \
iwk{KK{n1]!/w{/ ' 1##w#’ 1i; :{nl]’/+{q#’1d;r'}{nlwb!/*de}’c \
s3{nl’={Frw]’/+, 4 >+ Hnc,’ #nv] ' /+kd’ ve}+; #’rdq#w! nr'/ ’) H+Hrl#'{n’)&\
Tr+}aa (/™)
:t<-507_==+aTputchar(31[a]) :main(-65,_,a+1) :main((*a==’/’)+t,_,a+l)
:0<tmain(2,2,"%s") : ¥a=="/" | Imain(0,main(-61, *a,

"lakidc iQbK’(q)-[wl*%n+r3#1,{}:\nuvloca-0;m .vpbks,fxntdCeghiry"),a+1);}

Fig. 1. An obfuscated C program to print the poem “The Twelve Days of Christmas”.
The partial output of the program is shown in Figure 5.

i Program Behavior

s Path Profile

Path ID |Frequency ||Path ID |Frequency
main:Q 1 main:2 114
main:19 1 main:3 114
main:22 1 main:1 2358
main:23 10 main:7 2358
main:9 11 marn:4 24931
main:13 59 main:d 39652

Table 1. A path profile of the (readable) obfuscated C program’s execution.

i Other Version of Source Code

s Readable Version

#include <stdio.h>
main(t,_,a) char #*a;

{

1]
2]
(3]
(4]

[s]

L6l
71
£sl
[9]

if ((1Q) <) {

if (t < 3) main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a));
if (t < _) main(t+1i,_,a);
main(-94,-27+t,a);
if (t==2 && _ < 13) main(2,_+1,"");
else if (t < 0) {
if (vt < =72) main(_,t,LARGE_STRING);
else if (t < =50) {
if {_ == *a) putchar(31[a]);
else main{-65,_,a+1);
} else main{(*a=="/’)+t,_,a+l);

} else if (0 < t) main (2,2,"%s");

[10] else if (*a!='/?) main(Q,main(-61,*a,SMALL_STRING) ,a+l);

}

Fig. 2. A (more) readable version of the obfuscated C program, after reformatting,
performing local syntactic substitutions to turn expressions into statements and elim-
inating dead code. There are 10 lines containing calls, each uniquely numbered in
brackets.

Profile Information

x Summary information

[Path ID [[Frequency Condition [Call Lines
main:0 1 t == 1 (9]
main:19 1 t==2 && t >= _ [1,3,4]
main:22 1] t==2 &% t < _ && _ >= 13 [1,2,3]
main:23 l‘y 10 t==2 && t < _ & _ < 13 [1,2,3,4]
main:9 || 11 t >= 3 && t >= _ [3]
main:13 a5 t>= 3 &8 t < _ [2,3]
main:2 114 t == 0 k& *a == '/’ no call lines
main:3 || 114 t < -72 [5]
main:1 2358 t == 0 && *a = */° [10]
main:7 2358(t > -72 && t < -50 && . == »a| [6]
main:d || 24931 t <0 &k t »= =50 18]
main:5H 39652(t > -72 && t < -50 && _ t= =*a| [T]

Table 2. Summary of the twelve executed paths in the readable obfuscated C program
of Figure 2.

i Output Structure

s Poem’s nature structure

12 verses for 12 days

26 unique strings
= 3 common strings, “on the”, “day of Christmas...”, “and a partridge”
= 12 strings for ordinals (first, second, third, ..., twelfth)
« 11 strings for second through twelve gifts

66 occurrences of presents other than “partridge in a pear tree”
« O0+1+2+..4+11 =66

114 strings printed
= 12 occurrences of 3 common strings (12*3=36)
« 12 ordinals
= 66 non-partridge gifts

2358 characters printed

i Output & Program Behavior

= Correlation between the poem’s nature
and program profile data

= Execution count (frequency) implies
responsible part of the program

= Example

= Main:7 path execution 2358 implies this path is
corresponding to 2358 characters printing

= ldea to reconstruct the C program

i FSA on Program Profile

s Closer Examination on The Code and Table 2
= 6 path cluster arouns

Path ID |[[Frequency Condition Call Lines
main:0 1 €t == 1 [91
main:19 1 t==2 & €t >= _ [1,3,4]
main:22 1 t==2 & t < _ && _ >= 13 [1,2,32]
main:23 10 t==2 E& t < _ && _ < 13 [1,2,3,4]
main:9 11 t >= 3 && t >= _ []
main:13 55 t >= 3 E& t < _ [2,3]
main:2 114 t == 0 && *a == */°* no call ines
main:3 114 t < -72 [5]

main:1l 2358 t == O Z& *a 1= 2/2? C103}
main:7 2358[t > ~72 && t < -50 && _ == xal [6]

main:4 24931 t < O && t >= -5O sl

main:5 39652t > -72 && t < -50 && _ t'= =xal| [7]

Table 2. Summary of the twelve executed paths in the readable obfuscated C program
of Figure 2.

Path main:0 (initialization, execute once)

Paths main:19, main:22, main:23 (1+1+10 = 12 verses) make up the
outer loop;

Paths main:9, main:13 (11+55 = 66 non-partridge-gifts within a verse)
make up the inner loop;

Paths main:2, main:3(114, 114) print out the 114 strings;
Paths main:1, main:7 (2358, 2358) print out 2358 characters.

Restructure

= Restructure Program based on the FSA
= main (path main:0)
= initialization
outer_loop (paths main:19, main:22, main:23)
= 12 verses
inner_loop (paths main:9, main:13)
= 66 non-partridge-gifts within a verse
print_string (paths main:2, main:3)
= 114 strings
output_chars (paths main:1, main:7)
= print out 2358 characters
translat_and_put_char (path main:5)
= Skip_n_strings (path main:4)
= Source code not shown

i Result

= Restructured program profile (table 3)
and old program profile (table 2) in
next slide

= The restructured program has the exact
output with the original program

Comparison of Profiles

[Path ID [|[Frequency | Condition [Call Lines |
Path ID {Prequency Path ID Frequency e m — = |
main | skip n.strings:) 14 m“‘:‘“zég i T 2.; = T ﬁgg
: : main: == TS ,2,
outer Joop:) I sipastrmgs? 1808 manZ3 || 10] t==2 @kt < .4k <13 |[1,2,3,4]
. . main:9 11 t>= 38kt = _ [3]
?ﬂterJOOp.l 1l output.chars0] D308 e = e 5
imzer Joop:) 12|franslate.and put.chard] 2388 main:2 4] t==0&*a='/" |nocall bines
meckopl] 6] skpastringl] 208 main:3 L e Le]
main:1 2358 T == Q g *a != /) [10}
output thars;] 114 translate.and put.char| 39652 [main:7 7358t > 72 &k © < -50 &k _ == #a| [6]
pl?int _Smng.(] 114 main:4 24931 t <0 &kt >= -50 8
: main:5 30652t > -72 &k t < -50 &k _ '= *a| (7]

Table 3. The path profle of the restructured progran.

Table 2. Summary of the twelve executed paths in the readable obfuscated C program
of Figure 2.

i Summary

s FSA features

= Partition the program by levels of abstract
based on frequency;

» ldentify related computation based on
frequency cluster;

= FiInd computation related to the program’s
behavior based on specific frequency.

i Unanswered Questions

= Shortcoming of the example

= Direct relationship between the program’s
output and program’s behavior

= Size of the profile
= No Iinput

i Coverage Concept Analysis (CCA)

= Concept analysis

= Techniques to identify groups of objects that
have common attributes

= Input to concept analysis (binary relation)
=« Example (Test coverage table)

Procedures

Test |[ladd | 1Rotate | remi Min I Succ IDelFix
tl
t2
t3
t4
t5

aitaltakalls
Edbts
WA |] 4| P4

P [A
| 4l v
ki Edls

i Definition

= Pair (T, E), where T Is a set of tests and E iIs
a set of program entities, Is a concept |If
every test in T cover all entities in E, and no
test outside T covers all entities in E.

s Concept determine maximal sets of tests
covering identical entities(and maximal sets
of entities covered by identical tests)

i Example

Procedures
Test |add|[Rotate|rem|Min Suce | DelFix
tl || X X X
RIX| X X X
x| X [XXX
X X |[X[X|X] X
X X [X[X[X| X

Concept|/Tests Procedures
ol |4, th add, IRotate, rem, Min, Succ, DelFix
¢ t3,t4t0 [add, Rotate, rem, Min, Succ
¢d {t2tdth |add, IRotate, rem, DelFix
d |08 [edd Reate, em
¢h {tl, t2 t,t5 [add, rem, DelFix
b [t t2, 13, t4, t3[add, rem

i Partial Order

= Partial order
(1, E) C (I Bp) <= T\ CTh <= B, CE

= Concept lattice

i Concept Lattice

cb
tests = { tLA2A3,t4,85 }
procs = { add, rem }

/.

tests = { 3,14,15]
procs = { add. [Rotate, rem, Min, Succ |

ed cd
tests = { 12,3415) tests = { 112,145)
procs = { add, IRotate, rem } | | procs = { add, rem, DelFix }
c2

cd
tests = { t2,14.15 }
procs = { add, IRotate, DelFix, rem)

Example

Concept"Tests“ Procedures

o |t add, IRotate, em, Min, Suee, DelFix
() 3t [add, Rotate em, Min, Suee
o Lt jadd, IRotate, em, DelFy

cd th 6 ¢4 89 facd, Rotate, rem

A1t 6,85 [oad, em, DelFly

il t 43, tladd, rem a

¢l

tests = [1415 }
procs = { add, IRotate, rem, Min, Succ, DelFix }

i Concept Lattice Properties

= If test £is In a concept ¢, the tis in any
concept greater than ¢ . If entity eis In a
concept ¢, then e Is in any concept less than

C.

= For every test £, there Is a unique least
concept ¢ in which it appears, denoted by
[cont(t). For every entity e, there is a unique
greatest concept ¢ in which it appears,
denoted by gcont(e).

Least Concept and Greatest
Concept

s Example
b cH
tests = [1243445) proc = { add, rem }
procs = { add, rem } / \
/ - \ — cS
el e _ cldﬂ tests = [t1 }
tests = { 23,4415) tests = { 112,445) proc = { IRotate } proc = { DelFix }
procs = { add, iRotate, tem } | | procs = { add, rem, DelFix } s r
/ \ T c?
c2 cl - c3
tests = { (3,1415) tests = { t2,4.15 } la_st;.; ;'_l{ t35} | tests = { 12)
procs = { add. [Rotate, rem, Min, Succ } | | procs = { add, Rotate, DelFix, rem | proc = n, ofct /
cl cl
tests = [1415} tests = [t4,15 }
procs = { add, [Rotate, rem, Min, Succ, DelFix)

i CCA Contribution

= Analog to Static Control Flow
Relationships

= Domination, Postdomination and Region

= ldentifies “Dynamic Control Flow
Invariant”

Domination, Postdomination &
i Control Flow Implication

= Definition of domination and
postdomination

« Entity e Is said to dominate entity 7 if
every path from program entry to 7
Includes e.

= Entity 7 Is said to postdominate entity e
If every path from e to program exit
Includes entity 1.

Domination, Postdomination &
i Control Flow Implication(cont)

= Control Flow Implication

« If entity fis In a concept greater than or
equal to gcon(e), then the execution of e
dynamically implies the execution of 7,
which means in this test fdynamically
dominate e.

i Regions

= If entity e dominate fand 7
postdominate ¢, e and f are in the
same region.

= By the concept lattice, If gcon(e) =
gcon(f) then e and f are in the same
dynamic region.

i Dynamic & Static Information

= Dynamic information may not imply
static information.

= Static information always implies
dynamic information.

i Conclusion

= FSA and CCA can aid in the tasks of
program comprehension, program
restructuring and new test
development.

