
1 of 7

The Apache Configuration System

Understanding the Apache Configuration System
Before getting deep into how the new Apache configuration system for cPanel works, it
is wise to understand the goals that shaped its creation.

1. The Apache Configuration File is Not a Data Storage Medium
Many actions performed by the WebHost Manager, cPanel and associated scripts
make changes to the Apache configuration file. In earlier versions of cPanel, the
only way to tell whether a particular action had been performed was to examine
the resulting configuration file. For instance, if you wanted to determine if a
domain was configured as an add-on domain, a sub-domain, or a parked-domain,
then you would need to examine the related virtual host entry and look for the
particular way cPanel writes these entries. If the Apache configuration file was
lost or corrupted, then the state of a domain may also be lost.

2. The Apache Configuration Is Not a Configuration Interface

If cPanel software cannot be used to create a certain configuration, then the
temptation always exists to edit the Apache configuration directly. The new
configuration system does allow this to continue as detailed below, but the move
is definitely away from direct edits of the configuration files.

3. PHP and Apache Should Be Fully Configurable

This was certainly a design goal early on. We also wanted to make it possible to
select all of the various options the different versions of Apache and PHP have
available. Although the initial list of available options is limited, the current
option set covers the vast majority of circumstances, while significantly reducing
the chances of a user generated configuration creating a non-functional
configuration.

4. The Apache Configuration System Should Create a Working

Configuration
Due to the wide variety of options and nearly infinite number of possible
configurations, creating a non-functional configuration is a distinct possibility.
Migrating an Apache 1.x configuration to an Apache 2.x configuration is no
simple matter. We've attempted to fully abstract this process to simplify the
transition while retaining as much information as possible. Due to the large
number of possible configurations, we can't possibly test and verify compatibility
for all. There will always be exceptions, but for the vast majority of users, the
Apache configuration system will create a valid working setup. If a working
configuration cannot be found based upon your current settings, then cPanel's
software takes the route of "do no harm" and will attempt to restore your
previously working configuration and alert you of the issue.

2 of 7

An Overview of Operations
The process of building a new Apache configuration begins with the build time options
specified during EasyApache's setup. Prior to setting the build options, the current
Apache configuration is distilled to record the existing configuration options. Once the
build options are specified, the current Apache configuration is archived and moved aside
to make room for a new default configuration.

During the build process, a new default Apache configuration is installed on the system.
After any additional option modules such as PHP, mod_security are installed and their
necessary modifications are made to the Apache configuration file, a new, assumedly
valid Apache configuration file will exist in the configuration directory. Any directives
that are added to the final Apache configuration file as part of the defaults will have been
removed from the configuration file at this point and no VirtualHost entries will exist in
the configuration.

The new configuration is distilled in much the same way as the pre-existing
configuration, but this time the configuration is used as the basis for creating the server's
main Apache configuration template. Any new directives and their values will be stored.
Any directives and values from the previous configuration will receive the value from the
previous configuration. The combination of the main template and data stores will be the
basis for regenerating the final configuration file.

A new Apache configuration file is generated from the template and data stores and
finally checked for syntactical correctness. If it passes this test then the build process is
deemed complete. If it fails the syntax check, then the previous Apache configuration is
restored along with entire previous Apache installation.

Processing the Apache configuration consists of two main routines. The first routine
attempts to pull out all the VirtualHost domain information and rectify that data with
other cPanel data forming the "user data" of the system. This is the organization of
domains and their mappings to specific user accounts. This task is carried out by the
userdata_update utility.

The second routine attempts to pull out the remaining configuration information
contained within each VirtualHost. This information is sometimes version specific and
requires an Apache directive aware tool called the apache_conf_distiller. This
same tool processes the main directives of the Apache configuration and generates the
main Apache template. The second process involves gathering your current Apache
configuration and updating some values for correctness in regards to the Apache version
being installed. At the same time the configuration values are harvested, a template of the
current Apache configuration file is generated.

When rebuilding Apache via EasyApache, the current Apache configuration is processed
and stored. After the build process is complete, the new default Apache configuration file
is processed to yield a new template and add in any missing configuration values. Finally,

3 of 7

the previous data stores and the new template are used to generate the completed Apache
configuration file.

Internal WHM & cPanel Changes
Now that the Apache configuration data is abstracted and stored separately from
the actual configuration file, the cPanel and WHM need only to read and update
the data stores when modifying Apache related items. Once the data stores have
been updated, that information can be used to generate a new updated
configuration file. Until the complete EasyApache configuration system is rolled
out, modifications are made directly to the Apache configuration file and at the
same time the data stores are updated. This will change in the future, allowing the
data stores to be updated and processed using the template, yielding the same
results.

Data Storage
The configuration system utilizes YAML format for data storage. YAML is a
markup language designed to be human readable.

The primary configuration file for Apache is located at
/var/cpanel/conf/apache/main. All directives and sections outside of
VirtualHost sections are contained in this file. The data in this file is organized by
sections, starting with "main". The individual VirtualHost sections are separated
based upon the user into directories named for each user in
/var/cpanel/userdata. Inside the user's directory are one file for domain
mapping and an individual file for each VirtualHost section. Each file is named
according to its ServerName setting. VirtualHost sections for SSL configuration
are denoted by the "_SSL" extension to their filename. The user "nobody" is a
special case where data is only stored and not currently used. That may change in
the future.

Template Files
As mentioned earlier, the final Apache configuration template is generated from
the default Apache configuration installed during an Apache build. There are
some default values and required directives that are included in the resulting
template file from items in the Cpanel::AdvConfig::apache::directives module.
The resulting template file is stored in the directory /var/cpanel/template.
Within the template directory is a versioned directory containing the actual
template file. Currently there are only two versions, apache1 and apache2. Apache
2 and 2.2 configuration syntax is the same. This simplification may change in the
future to separate these versions. The template file generated by the distiller is
named "main.default". This template file does not include the format for
VirtualHost sections. They are handled in separate files and are not generated
automatically. The template files for VirtualHost sections have been built by
cPanel to ensure compatibility with cPanel's numerous configuration options. The
default templates are located in version specific directories inside
/usr/local/cpanel/src/templates.

4 of 7

The template processing tool uses template files in the following order:

Main Configuration:
/var/cpanel/templates/apache(1|2)/main.local
/var/cpanel/templates/apache(1|2)/main.default
/usr/local/cpanel/src/templates/apache(1|2)/main.default

VirtualHosts:
/var/cpanel/templates/apache(1|2)/VirtualHost.local
/var/cpanel/templates/apache(1|2)/VirtualHost.default
/usr/local/cpanel/src/templates/apache(1|2)/VirtualHost.def
ault

SSL VirtualHosts:
/var/cpanel/templates/apache(1|2)/ssl_VirtualHost.local
/var/cpanel/templates/apache(1|2)/ssl_VirtualHost.default
/usr/local/cpanel/src/templates/apache(1|2)/ssl_VirtualHost.default

VirtualHost templates can be overridden by including the following key in the
userdata, the value of which should be the full path to the custom VirtualHost
template:

custom_vhost_template_ap(1|2)

Tools
1. userdata_update

Path: /usr/local/cpanel/bin/userdata_update
This utility is used to initialize, update, and possibly reset the userdata files.
Userdata files contain the mappings of domains to their role and each
VirtualHost's minimal data. The utility draws upon information contained in
the cPanel user files (/var/cpanel/users) and the existing Apache
configuration file.

The userdata_update utility's functionality can be altered by the
following command line options:

--reset
Ignore existing data, resetting all information to default values in
accordance with cPanel configuration settings.

--unpark-addons
A special flag rarely needed that analyzes the domain mapping for add-on
domains and rectifies the situation where add-on domains are also listed as
parked domains.

5 of 7

--help
Displays the command line options

2. apache_conf_distiller
Path: /usr/local/cpanel/bin/apache_conf_distiller
Its functionality is covered in the proceeding text. Essentially this utility is
used to distill the Apache configuration file into a template and update the
userdata and Apache configuration data files. Flags worth knowing about:

--help
Describes various command line options. Changes to the distiller's
operation will be documented here first.

--verbose
Displays progress and action messages. Messages seen with the verbose
flag do not necessarily indicate problems or failures, but are merely
informational. If you're having problems with the distiller, then running it
with the verbose flag may more clearly indicate the root cause.

--update
The update flag tells the distiller to update userdata and Apache
configuration data as well as any associated templates.

--reset
This causes the distiller to ignore existing datastore values and start from
scratch. By default, the distiller merges existing datastores with newly
distilled data.

--pedantic
This causes the distiller to flag any directives it doesn't know of as an
error. By default, it will silently add unknown directives to the template
and datastores.

--main
This causes the distiller to ignore all VirtualHosts for the purpose of
updating the main Apache configuration files and template. VirtualHost
datastores will not be updated during the distiller run.

--apache-conf=<path>
This flag allows you to distill a httpd.conf file that is not in the
standard location. For instance, if you fix one of the
httpd.conf.timestamp
files to work, you can distill it into the data stores and template with this
flag.

6 of 7

3. build_apache_conf
Path: /usr/local/cpanel/bin/ build_apache_conf
This utility is synomous with the following scripts: (includes
/scripts/rebuildhttpdconf and /scripts/buildhttpdconf). This tool activates the
template processing system and generates a new Apache configuration.

4. rebuild_phpconf
Path: /usr/local/cpanel/bin/userdata_update
This sets up an include file /usr/local/apache/conf/php.conf with the specified
PHP configuration. Further documentation can be found by passing the "--
help" command line option.

5. ensure_vhost_includes
Path: /scripts/ensure_vhost_includes
This sets up a series of directories under
/usr/local/apache/conf/userdata with configuration files for various
things like Tomcat. If for some reason this directory is missing or corrupted,
running this script should correct the problem. The "--help" command line
option documents other options.

Common Problems and Questions

Problem: A user wants to add something to the main section of httpd.conf
Solution: Edit the file and run
/usr/local/cpanel/bin/apache_conf_distiller --update --main.
This will update the main Apache template and datastores to include the new
directive(s). If something is being removed, --reset may also be required but is
rarely the case.

Problem: apache_conf_distiller or userdata_update fail before
EasyApache runs
Solution: Run these tools with the “—verbose” flag and isolate what is causing
the problem. If these tools fail to function properly, then the issue should be
addressed prior to rebuilding Apache otherwise there may be data loss.

Problem: Apache configuration fails after rebuilding Apache
Solution: These failures are always accompanied by a message stating the
location of the failed httpd.conf and the failure message that was generated. Look
at that file and identify why Apache rejected the new configuration file. If the
problem is a missing module (DSO or compiled in), file a bug report saying
which Directive appeared in the failed httpd.conf and which module was missing
(including the log output about the option failing if any). If the failure looks like it
was caused by corrupted userdata, use the tools available to correct the issue
Problem: User wants to add something to a virtualhost.
Solution: It is possible to create a custom virtualhost template and have it used
instead of the default virtualhost templates. You'd need to add a line to the
virtualhost datastore telling it the location of the template. Usually minor

7 of 7

configuration changes can be most simply made via the user's .htaccess files or
included into httpd.conf under /usr/local/apache/conf/userdata. The
include directory structure is not created automatically, but use the following file
structure:

/usr/local/apache/conf/userdata/(ssl|std)/(1|2)/<user>
/<domain>/<something>.conf - Individual VirtualHost
/usr/local/apache/conf/userdata/<something>.conf - All VirtualHost
containers
/usr/local/apache/conf/userdata/[ssl or
std]/<something>.conf - All VirtualHost containers for SSL or
standard VirtualHosts
/usr/local/apache/conf/userdata/[ssl or std]/[1 or
2]/<something>.conf - All VirtualHost containers for SSL or
standard VirtualHosts with version specific settings
/usr/local/apache/conf/userdata/[ssl or std]/[1 or
2]/<user>/<something>.conf - All of a users VirtualHost
containers for SSL or standard VirtualHosts with version specific settings
 /usr/local/apache/conf/userdata/[ssl or std]/[1 or
2]/<user>/<domain>/<something>.conf - Individual VirtualHost
container for SSL or standard VirtualHosts with version specific settings

Includes are located as the final directive in the VirtualHost container. Default
values can usually be overridden via the include files. Include files beginning with
"cp_" are reserved for cPanel settings and can and will likely be automatically
rewritten. After adding any new include files, the required VirtualHost include
statements can be ensured by running /scripts/ensure_vhost_includes
with the proper arguments.

Problem: Apache works fine but PHP isn't working properly.
Solution: The EasyApache build system and the new Cpanel::AdvConfig
configuration system leave the PHP configuration contained in php.ini largely
untouched. When users upgrade PHP, they need to check that their php.ini is
configured correctly. They need to update their extensions, and they might need to
update any PHP MIME types or directives they have listed in .htaccess files.
Fortunately, the PHP configuration supplied by cPanel is in a single file
/usr/local/apache/conf/php.conf, so if MIME types are the issue, check
that file to see how PHP is configured and update the .htaccess files to use the
configured MIME type. If the php.ini file is to blame, make sure the extension_dir
is set properly (use php-config to find the correct one), make sure the
extensions being loaded are actually installed, make sure Zend and ION are up to
date, and most problems will be resolved. As far as Zend not working with
different PHP configuration flags, we are attempting to document these in the
EasyApache interface as they are discovered.

