
MySQL Performance
CookBook

Peter Zaitsev, co-founder, Percona Ltd

April 23-26 2007

About Speaker
 Peter Zaitsev

 Co-Founder at Percona Ltd,

- Consulting company specializing in MySQL and LAMP
Performance

 Founder http://www.mysqlperformanceblog.com

 Spent 4.5 years with MySQL AB,

- High Performance Group, Manager
- Performance related Support, Development, Consulting etc

 Have designed and implemented numerous MySQL based
projects

http://www.mysqlperformanceblog.com/

About Presentation
 Selected Problems based on Development and Consulting

experience
 Problems frequently met in real world applications
 Something people have trouble with
 Multiple solutions possible for many problems, take it as

example adapt and for your needs
 Some may be ugly, you've been warned
 Your alternative solutions proposals are very welcome

Just raise your hand to comment

 I frequently Blog about such cases as I pop into them
http://www.mysqlperformanceblog.com

http://www.mysqlperformanceblog.com/

Performance Management

How to kill Run Away Queries ?
 Interactive query is running for 30 seconds already, it is

better to tell user it did not work than to have timeout
 Ask Dmitry Lenev to finnaly push his SQL_TIMEOUT patch
 Or mark queries

SELECT /*TIMEOUT:30*/

 And have script which runs SHOW PROCESS LIST every
second and kills them

 In MySQL 5.1 with Event Scheduler should be possible to
implement entirely in MySQL

How to Limit concurrency ?
 You've identified optimal concurrency for your search query

is at 10 concurrent queries, how to avoid running more ?
 Assume you have 10 “slots” ,

Select random of them, for example 5

Use SELECT GET_LOCK('search5',1) to try to lock the slot

 Try the next slot if this one is busy
 If you can't find free slot fast enough/went a full cycle report

error to the user

How to implement real time notifications ?
 You want process to be informed as soon as possible when

table is changed and you do not want it to pool all the time
 Updater:

SELECT GET_LOCK('queue')

.... update data...

SELECT RELEASE_LOCK('queue')

SELECT GET_LOCK('queue')

 Reader
SELECT GET_LOCK('queue') in the loop

Will be informed as soon as updated is done with the round and
releases lock.

How to check which queries load server
 Using slow query log ?

IT may be 1000s/sec of 1ms long queries are giving the load

 Pooling processlist ?
Very short queries are hard to catch because of OS scheduling

 Use microsecond resolution patch
http://www.mysqlperformanceblog.com/2006/09/06/slow-query-log-analyzes-tools/

 Or use MySQL Proxy for timing queries on client size
http://jan.kneschke.de/projects/mysql/mysql-proxy

 Aggregate queries with mysqlsla
 Application level query profiling is also good

http://www.mysqlperformanceblog.com/2006/09/06/slow-query-log-analyzes-tools/
http://jan.kneschke.de/projects/mysql/mysql-proxy

How to profile web site for slow pages
 These can be very specific to the user/date

user has 50.000 images loaded while there are 10 in average

Someone happened to get to page 1000 in search results

 Have dynamic web page views logged with cpu time, wall
clock time, sql time stored and analyze it regulary

 So you will know 95% requests are answered within 0.3 sec
 Often you would find some rare requests taking many

minutes or hours

How to avoid running out of connections
 Typical configuration - 5 web nodes

Apache with MaxClients=500

Single MySQL Server, 2500 connections may be required

 Are these 500 Clients really serving dynamic content
no, they are used for keep-alive, spoon feeding,static content most

of the time

 Serve static content separately, Get lighttpd or another
apache server in front to do keep alive and spoon feeding
or use FastCGI

 You rarely will need more than 20-30 of dynamic content
generation scripts running at the same time.

 This saves a lot of memory in addition to connections

Schema Design & Queries

Design Schema for your Queries
 Or at least think about queries when designing schema
 Purely Object-Relationship based design can give very poor

plans
 Learn MySQL Optimizer features and Limits
 Think how your query is executed by MySQL
 Consider Disk IO in particular

Beware Distinct and Group By
 DISTINCT and GROUP BY often requires a lot of work

even if used with limit
- Some GROUP BY ... LIMIT may be well optimized

 SELECT SUM(traffic) t, user u FROM users GROUP BY
user, ORDER BY cnt DESC LIMIT 10

 Create and maintain summary table
Often periodic-builds are good enough
Does not work if you have dynamic where clause

Using SphinxSearch can be real help in certain cases

 Cache result separately

COUNT(*) is equally evil
 SELECT COUNT(*) FROM profiles WHERE gender='M'

and age>18;
 Often used together with displaying search results
 SQL_CALC_FOUND_ROWS barely helps

Full result query may contain number of joins
It will need to traverse all result set

 Multiple solutions to suite application
 Having count stored in table is most simple one
 Consider “users” and “pictures” user can have

user_pictures field to avoid counting.

COUNT(*) on Steroids
 So COUNT needs to traverse all rows but how to make if

faster ?
 Get rid of JOINs which do not affect COUNT(*)
 Make sure count uses covering index

“Using Index” in Where Clause

 Can give 5-10 times performance boost
Even more for IO bound workloads

 If that is not enough you can use distributed partitioning
Sphinx is good tool for some applications

100.000.000+ rows counted in fraction of a second

 Applies to other aggregate functions as well

Do you need count(*) at all
 You may be simply browsing results page by page

WordPress does it for example

 Can you have estimated count as Google does ?
 If you're just need it to draw “pager” you can do it while

fetching data
SELECT * FROM ... LIMIT 1000
If you get less than 1000 you know the exact number
if you get 1000 you know it is 1000+ which is good enough
Can be used to cache the result set
May simple use query with no joins to fetch ids and get count at the

same time

Counter Table Tricks
 Counter table limits concurrency

It will serialize transactions updating same rows if you're using them

 Solution:
Keep more than one row for each value

 Instead of: Ip_stats (ip,sum_traffic,num_packets)
 (ip,slot,sum_traffic,num_packets)

With 10 or 100 slots
Random Slot is updated by transaction
SELECT SUM(num_packets) where ip='123.45.67.89'

Dealing with High limit values
 SELECT * FROM users ORDER BY last_online DESC limit

100000,10
MySQL traverses first 100000 rows and throws them away

 They can be Rare but can be welcoming door for DOS
attack

 Search engine bots can go to high page numbers
 If you can't make limit run fast at least restrict it

Even Google limits you to first 1000 results
LiveJournal gives you calendar if you browse your entries too far

High Limits: Just pre-generate offsets
 Very useful for ratings and other static data

SELECT * FROM sites ORDER BY visits DESC LIMIT 100,10
change to

SELECT * FROM sites_rating WHERE position BETWEEN 101 and
110 ORDER BY position

 Expensive to update for dynamic data
 Can be complex to maintain for dynamic where clause
 May give surprising results if data changes a lot

High Limit: Link to the next page
 You can specify exact position instead of limit
 SELECT * FROM stories ORDER BY rating DESC LIMIT

10,10
 SELECT * FROM stories WHERE rating<=1000 and

story_id<400000 ORDER BY rating DESC, story_id DESC
Assumes story with rating 1000 and story_id 400000 was last on

the first page

 Have to add sorting by story_id to have sorting fully defined

Making skipping rows fast
 Similar to COUNT(*) case
 Hard to get covering index directly because you need a lot

of data
 Use Derived Table trick
 SELECT * FROM users WHERE id IN (SELECT id FROM

users WHERE gender='m' ORDER BY rating DESC limit
100,10)
Covering index would be (gender,rating,id)

Do not use LIMIT for Batch Jobs
 SELECT * FROM TASK LIMIT N,100000

Even if table does not change
has to scan and throw away more and more rows
Average query complexity will be half of table scan.

 SELECT * FROM TASK WHERE ID BETWEEN N AND
N+99999 is much better choice

 Applies to simple cases when you so not want to “mark jobs
as done”

Power of Derived Tables
 Great way to get control over how query is executed
 Can be performed in many cases to to get better

performance
 For example:

- To help using partially covered Index

SELECT * FROM tbl WHERE a=5 AND id IN (SELECT id
FROM tbl WHERE b LIKE “%test%”)

Can use index covered index(B,ID)
- Performing Join post Group-By or Lookup Query

 Beware – if you join two derived tables together MySQL
have to do full join.

Dealing With Temporary Tables
 If you store long rows it will consume a lot of memory or go

on disk
 If you use BLOB/TEXT fields table must be created on disk

- Placing such tables on tmpfs is good idea

 In Memory temporary tables make Dynamic length Rows
Static
VARCHAR(255) becomes CHAR(255) which can take 750+ bytes

with UNICODE

 Try to keep VARCHAR Max Length short
 Make only Ids to go to temporary table and perform required

JOIN on the second stage (by use of derived tables)

Selecting Random Objects
 SELECT * FROM banners ORDER BY rand() limit 1;

Worse way you can do it.

 Check http://jan.kneschke.de/projects/mysql/order-by-rand
for ideas

 Can generate ID from 1 to max on the application and
SELECT * FROM banners WHERE id=<computed random>
Can use <= >= with ORDER BY to deal with holes

 Create 100000 random rows in the single sweap and store
them in separate tables

 Most applications do not require perfect random values
anyway.

http://jan.kneschke.de/projects/mysql/order-by-rand

Sorting – Beware Filesort
 Watch out for “filesort” - external sorting which MySQL has

to use
 Does not scale with large amount of objects
 Use proper index if it can do the trick
 SELECT * FROM TBL WHERE A IN(1,2) ORDER BY B

LIMIT 5
MySQL can't use index for sorting unless you have = for all

previous columns
(SELECT * FROM TBL WHERE A=1 ORDER BY B LIMIT 5
UNION SELECT * FROM TBL WHERE A=2 ORDER BY B LIMIT 5)
ORDER BY B LIMIT 5

Sorting and Join
 If sorting is done by column from other than first table

MySQL can't do index based sort

SELECT * FROM USES,PICTURE WHERE
USER.ID=PICTURE.USER_ID AND USER.NAME=”john”

ORDER BY PICTURE.ADDED DESC LIMIT 10;
If name is unique pre-fetching often helps

SELECT * FROM PICTURE WHERE USER_ID=1234 ORDER
BY ADDED DESC LIMIT 10

 Caching columns is other helpful technique

SELECT * FROM PICTURE WHERE USER_COUNTRY=123
ORDER BY ADDED DESC LIMIT 10;

Sorting and Indexing
 MySQL May have hard time selecting index for sorting VS

lookup
 SELECT * FROM T WHERE A=5 AND B=6 ORDER BY C

LIMIT 10
Having index on (A,C) and (A,B) MySQL Will likely chose (A,B)

LIMIT is nor really well considered while optimizing
Have index (A,B,C) or use FORCE INDEX

 Can be tricky to set up indexes for all lookup/sort
combinations

 Can use Sphinx for distributed sorting and filtering

What is about giant sorts and group by ?
 Data analyses

SELECT COUNT(*) C FROM LOG GROUP BY PAGE ORDER BY
C DESC LIMIT 1000;

 Make sure GROUP BY is done using sorting if number of
pages is large (SQL_BIG_RESULT hint)
and tmp table if it is small.

 Group by can do index scan if sorting by the same column

 sort_buffer_size set before the query

 max_length_for_sort_data may need to be tured

 Watch out for sort file size – varchars, blobs.

“Manual Joins”
 SELECT * FROM A,B WHERE A.BID=B.ID AND A.C=5
 Changing to

SELECT * FROM A WHERE A.C=5
SELECT * FROM B WHERE B.ID IN (<List of retrieved values>)

 Sounds silly, but what are the benefits ?
 Can be faster as each row from B is retrieved once

And because IN list will be sorted for optimal retrieval

 Works if table A,B are located on different servers
 Can use caching to filter out list of retrieved values

Get B values from memcache with multi-get and only get missed
once from the database

Beware subqueries
 MySQL Subqueries optimization is currently weak

Many subqueries working for other databases will run extremely
slow with MySQL

 How can you workaround ?
Convert to JOINs
Convert to derived table (subselect in FROM)
Use explicitly created temporary table (with index)
Change to IN list created by application.

Using temp VIEW instead of Derived Table
 Derived tables are same as inline views

Right but they happen to use different code bases in MySQL
 SELECT ... FROM (SELECT FROM ...) ...

Will always materialize select in temporary table and no indexes
 VIEWS can use temporary able and “merge” execution

method.
 So you can use view to get merge way of query execituin

CREATE VIEW A ...
SELECT * FROM A ...
DROP VIEW A

Index Merge for Full Text Search
 MySQL Full Text Search index is only index which is used

full text search
You can't use both FT index and index on category for example

 You can add extra column converting your where clause
XCAT25, XUSER12345 for category=25 and user=12345

Unique keywords which are not met in the text itself
 Add appropriate keywords in full text search query if

searching within given object
Boolean search

 Does not make Full Text Search to fly but can help in some
cases

Backup and Recovery

Getting fast cross storage engine backups
 We want it binary for fast backup and recovery
 LVM or other snapshotting techniques is a great choice

FLUSH TABLES WITH READLOCK
<CREATE SNAPSHOT>
SHOW MASTER STATUS; SHOW SLAVE STATUS;
UNLOCK TABLES;

 Copy data from snapshot any way you like
rsync, rdiff, tar via ssh etc

 Make sure you have enough space on the snapshot volume
 On LVM2 you can run Innodb recovery with separate

MySQL instance before copying

Making LVM Backup Warmer
 LVM Backup is not hot backup

Same applies to Innodb Hot backup
 FLUSH TABLES WITH READ LOCK may take very long to

execute
Long queries
Many open tables

 Pre-Flush tables by running FLUSH TABLE TBL; for all
tables in system (one by one)

 Make sure there are no long running queries when backup
takes place

Point in time recovery via Binary Log
 “Standard way to do point in time recovery”
 Mysqlbinlog myhost-bin.000005 | mysql

Slow, a lot of conversions
Can get in problems with mysqlbinlog bugs or version issues
No easy way to filter out the stuff

 Start dump master to read binary logs you want to recover
It can have empty database it does not matter
Use CHANGE MASTER TO to initiate recovery
START SLAVE UNTIL... can be used to stop where needed
replicate-do-wild-table can be used to recover only tables you

need

Time for Questions
 More Performance Tips

http://www.mysqlperformanceblog.com
 Helping to find out what tips matter for you

consulting@mysqlperformanceblog.com

http://www.mysqlperformanceblog.com/
mailto:consulting@mysqlperformanceblog.com

