
UNIT-3 Database Technologies
Lecture-19

Two and Three tier architecture

The Tier

Definition:

 A tier is a distinct part of hardware or software.

Discussion:

 The most common tier systems are:

• Single Tier

• Two Tier

• Three Tier

 Each are defined as follows:

Single Tier

Definition:

 A single computer that contains a database and a front-end to access the

database.

Discussion:

 Generally this type of system is found in small businesses. There is one computer

which stores all of the company’s data on a single database. The interface used to

interact with the database may be part of the database or another program which ties into

the database itself.

Advantages;

 A single-tier system requires only one stand-alone computer. It also requires only

one installation of proprietary software. This makes it the most cost-effective system

available.

Page No:1

UNIT-3 Database Technologies
Lecture-19

Disadvantages:

 My be used by only one user at a time. A single tier system is impractical for an

organization which requires two or more users to interact with the organizational data

store at the same time.

Client/Server

Definition:

 A client is defined as a requester of services and a server is defined as the

provider of services. A single machine can be both a client and a server depending on the

software configuration.

File Sharing Architecture

Definition:

 Files used by the clients are stored on the server. When files are downloaded to

the client all of the processing is done by the client. This processing includes all logic

and data.

Discussion

 File sharing architectures work if shared usage is low, update contention is low,

and the volume of data to be transferred is low. The system gets strained when there are

more than 12 users. This system was replaced by the two tier client/server architecture.

Two Tier Systems

Page No:2

UNIT-3 Database Technologies
Lecture-19

Definition:

 A two tier system consists of a client and a server. In a two tier system, the

database is stored on the server, and the interface used to access the database is installed

on the client.

Discussion:

 The user system interface is usually located in the user's desktop environment and

the database management services are usually in a server that is a more powerful machine

that services many clients. Processing management is split between the user system

interface environment and the database management server environment. The database

management server provides stored procedures and triggers.

Purpose and Origin

Two tier software architectures were developed in the 1980s from the file server software

architecture design. The two tier architecture is intended to improve usability by

supporting a forms-based, user-friendly interface. The two tier architecture improves

scalability by accommodating up to 100 users (file server architectures only

accommodate a dozen users), and improves flexibility by allowing data to be shared,

usually within a homogeneous environment The two tier architecture requires minimal

Page No:3

http://www.sei.cmu.edu/str/descriptions/template/purpose.html
http://www.sei.cmu.edu/str/indexes/glossary/usability.html
http://www.sei.cmu.edu/str/indexes/glossary/scalability.html
http://www.sei.cmu.edu/str/indexes/glossary/flexibility.html

UNIT-3 Database Technologies
Lecture-19

operator intervention, and is frequently used in non-complex, non-time critical

information processing systems. Detailed readings on two tier architectures can be found

in Schussel and Edelstein.

Technical Details

Two tier architectures consist of three components distributed in two layers: client

(requester of services) and server (provider of services). The three components are

1. User System Interface (such as session, text input, dialog, and display

management services)

2. Processing Management (such as process development, process enactment,

process monitoring, and process resource services)

3. Database Management (such as data and file services)

The two tier design allocates the user system interface exclusively to the client. It places

database management on the server and splits the processing management between client

and server, creating two layers.

Usage Considerations

Two tier software architectures are used extensively in non-time critical information

processing where management and operations of the system are not complex. This design

is used frequently in decision support systems where the transaction load is light. Two

tier software architectures require minimal operator intervention. The two tier

architecture works well in relatively homogeneous environments with processing rules

(business rules) that do not change very often and when workgroup size is expected to be

fewer than 100 users, such as in small businesses.

Advantages:

 Since processing was shared between the client and server, more users could

interact with such a system.

Page No:4

Disadvantages:

http://www.sei.cmu.edu/str/descriptions/template/usage.html

UNIT-3 Database Technologies
Lecture-19

 When the number of users exceeds 100, performance begins to deteriorate. This

limitation is a result of the server maintaining a connection via "keep-alive" messages

with each client, even when no work is being done. A second limitation of the two tier

architecture is that implementation of processing management services using vendor

proprietary database procedures restricts flexibility and choice of DBMS for applications.

Finally, current implementations of the two tier architecture provide limited flexibility in

moving (repartitioning) program functionality from one server to another without

manually regenerating procedural code.

Three Tier Architecture

Purpose and Origin

The three tier software architecture (a.k.a. three layer architectures) emerged in the 1990s

to overcome the limitations of the two tier architecture (see Two Tier Software

Architectures). The third tier (middle tier server) is between the user interface (client) and

the data management (server) components. This middle tier provides process

management where business logic and rules are executed and can accommodate hundreds

of users (as compared to only 100 users with the two tier architecture) by providing

functions such as queuing, application execution, and database staging. The three tier

architecture is used when an effective distributed client/server design is needed that

provides (when compared to the two tier) increased performance, flexibility,

maintainability, reusability, and scalability, while hiding the complexity of distributed

processing from the user

Technical Details

A three tier distributed client/server architecture (as shown in Figure 28) includes a user

system interface top tier where user services (such as session, text input, dialog, and

display management) reside.

Page No:5

The third tier provides database management functionality and is dedicated to data and

file services that can be optimized without using any proprietary database management

http://www.sei.cmu.edu/str/descriptions/template/purpose.html
http://www.sei.cmu.edu/str/descriptions/twotier.html
http://www.sei.cmu.edu/str/descriptions/twotier.html
http://www.sei.cmu.edu/str/indexes/glossary/flexibility.html
http://www.sei.cmu.edu/str/indexes/glossary/maintainability.html
http://www.sei.cmu.edu/str/indexes/glossary/reusability.html
http://www.sei.cmu.edu/str/indexes/glossary/scalability.html

UNIT-3 Database Technologies
Lecture-19

system languages. The data management component ensures that the data is consistent

throughout the distributed environment through the use of features such as data locking,

consistency, and replication. It should be noted that connectivity between tiers can be

dynamically changed depending upon the user's request for data and services.

The middle tier provides process management services (such as process development,

process enactment, process monitoring, and process resourcing) that are shared by

multiple applications.

The middle tier server (also referred to as the application server) improves performance,

flexibility, maintainability, reusability, and scalability by centralizing process logic.

Centralized process logic makes administration and change management easier by

localizing system functionality so that changes must only be written once and placed on

the middle tier server to be available throughout the systems.

Usage Considerations

The middle tier manages distributed database integrity by the two phase commit process.

It provides access to resources based on names instead of locations, and thereby improves

scalability and flexibility as system components are added or move.

Sometimes, the middle tier is divided in two or more unit with different functions, in

these cases the architecture is often referred as multi layer. This is the case, for example,

of some Internet applications. These applications typically have light clients written in

HTML and application servers written in C++ or Java, the gap between these two layers

is too big to link them together. Instead, there is an intermediate layer (web server)

implemented in a scripting language. This layer receives requests from the Internet

clients and generates html using the services provided by the business layer. This

additional layer provides further isolation between the application layout and the

application logic.

Page No:6

It should be noted that recently, mainframes have been combined as servers in distributed

architectures to provide massive storage and improve security.

UNIT-3 Database Technologies
Lecture-19

Definition:

 The addition of a middle tier between the user system interface client environment

and the database management server environment.

Discussion:

 There are a variety of ways of implementing this middle tier, such as transaction

processing monitors, message servers, or application servers. The middle tier can perform

queuing, application execution, and database staging.

Example:

If the middle tier provides queuing, the client can deliver its request to the middle

layer and disengage because the middle tier will access the data and return the answer to

the client. In addition the middle layer adds scheduling and prioritization for work in

progress.

Advantages:

The three tier client/server architecture has been shown to improve performance

for groups with a large number of users (in the thousands) and improves flexibility when

compared to the two tier approach. modules onto different computers in some three tier

architectures.

Disadvantages:

The three tier architectures development environment is reportedly more difficult

to use than the visually-oriented development of two tier systems.

Ecommerce Systems - Application Servers

Definition:

 Application servers share business logic, computations, and a data retrieval engine

on the server. There is now processing required on the client.

Page No:7

Advantages:

UNIT-3 Database Technologies
Lecture-19

 With less software on the client there is less security to worry about, applications

are more scalable, and support and installation costs are less on a single server than

maintaining each on a desktop client. The application server design should be used when

security, scalability, and cost are major considerations.

Multi-Tier Application Design

An age-old software engineering principle explains that by logically partitioning a piece

of software into independent layers of responsibility, one can produce programs that have

fewer defects, are better at documenting themselves, can be developed concurrently by

may programmers with specific skill sets, and are more maintainable than the alternative

of a monolithic hunk of code. Examples of these layers, or tiers, are common: the kernel

(privileged CPU mode) and other applications (user mode); the seven ISO/OSI network

model layers (or the redivided four used by the Internet); and even the database "onion"

containing core, management system, query engine, procedural language engine, and

connection interface.

Note that these tiers are entirely logical in nature. Their physical implementation may

vary considerably: everything compiled into one EXE, a single tier spread across multiple

statically- or dynamically-linked libraries, tiers divided amongst separate networked

computers, and so forth.

Each such tier is one further level of abstraction from the raw data of the application (the

"lowest" tier). The "highest" tier is therefore the most "abstract" and also the best

candidate for communicating directly with the end user.

Individual tiers are designed to be a self-contained as possible, exposing only a well-

defined interface (e.g. function names, usually called an Application Programming

Interface, or API) that another tier may use. In this respect, tiers are analogous to the

classes of Object-Oriented Programming. In theory, a new tier with a compatible

interface could easily be substituted for another, but in practice this can't always be done

without a bit of fuss.

Page No:8

Tiers only communicate in this downward direction (that is, a lower-level tier does not

call a function in a higher-level tier), and a tier may only call into the tier directly beneath

UNIT-3 Database Technologies
Lecture-19

it (that is, tiers are not bypassed). One might also say that a higher-level tier is a

"consumer" of the services afforded by the lower-level tier, the "provider".

Each tier does introduce a small performance penalty (typically, stack frame overhead for

the function calls) but this is usually not significant, and is outweighed by the design

advantages of a multi-tier design.

If performance does become an issue, some of the rules above may be broken, with a

consequent loss of design consistency.

Three tier VS Muti tier

These three tiers have proved more successful than other multi-tier schemes for a couple

of reasons:

Matching Skill sets: It turns out that the skills of the various people that might work on

building an application tend to correspond neatly with the three tiers. The Presentation

tier requires people with some level of either user-interface/ergonomics experience or

artistic sensibilities, or the combination of the two (often found in web designers). The

Business Logic tier calls upon people very familiar with procedural language techniques

and a considerable investment in a particular set of procedural programming languages

(e.g. C/C++, Java, VB, PHP). Finally, the Data tier requires intimate knowledge of

relational database theory and the SQL DML language. It's next to impossible to find a

single person with talent and experience in all three areas, and reasonably difficult to find

people with skills in two. Fortunately, the separation of the three layers means that people

with just one of these skill sets can work on the project side by side with those possessing

the other skills, lessening the "too many cooks" effect.

Page No:9

Multi-Server Scalability: Just as people become "optimized" for a certain task through

learning and experience, computer systems can also be optimized for each of the three

tiers. While it's possible to run all three logical tiers on a single server (as is done on the

course server), as a system grows to accommodate greater and greater numbers of users

(a problem typical of web applications), a single server will no longer suffice. It turns out

that the processing needs of the three tiers are distinct, and so a physical arrangement

often consists of many Presentation tier servers (a.k.a. web servers), a few Business

UNIT-3 Database Technologies
Lecture-19

Logic tier servers (a.k.a. application servers), and usually just one, or at most a handful,

of Data tier servers (a.k.a. RDBMS servers). RDBMS servers consume every resource a

hardware platform can provide: CPU, memory, disk, and gobs of each. RDBMS's also

often have innumerable tuning parameters. An application server is typically only CPU

and memory-bound, requiring very little disk space. Finally, a web server (just a

specialized type of file server) is mostly reliant on memory and disk.

Review Questions

1. Explain what is single tier database architecture?

2. Explain the Two-Tier architecture?

3. Explain the n tier architecture?

References

http://otn.oracle.com/pub/articles/tech_dba.html

http://www.openlinksw.com/licenses/appst.htmDate, C. J. An Introduction to Database

Systems. Volume I. Addison/Wesley, 1990, 455–473.

Page No:10

http://otn.oracle.com/pub/articles/tech_dba.html
http://www.openlinksw.com/licenses/appst.htm

	Purpose and Origin
	Usage Considerations
	Purpose and Origin
	Multi-Tier Application Design

