Securing Apache and PHP

Justin Mayhue and Christopher Pau



Motivation

. Via LAMP (Linux, Apache, MySQL, and
PHP) web hosts have a popular, free
OS/software solution

. According to Netcraft, over 47% of
webservers use the Apache as of October
2007

. Popularity makes for an easy target, as
oftentimes configurations are not well
thought-out



Who should be concerned?

. Webmasters — installation of scripts
(permissions errors: chmod 7777 7557?)

. Web Developers — creating software for
various configurations (what is enabled?
Disabled?)

. Web Hosts — security of their server and
possible abuse

. Average Users — where Is their data saved?
Who can access it? How is it secured?



Background: Apache

. Free, open-source, Unix-based webserver

software available for Linux, Mac OSX,
Windows, and other platforms

. Design features revolve around modules

used to control, interpret, and deliver web
content to clients

. Supports virtual hosting — multiple users can

host independent sites on the same server
platform



Background: PHP

. PHP (PHP: Hypertext Processor) is a
scripting language aimed at creating dynamic

content
. Like Apache, it Is free, open-source software

available for a variety of operating systems
. Works with Apache to filter user input and
provide content for Apache to serve back to

the users



Theory: CGI Binaries

. CGIl (Common Gateway Interface) is a

protocol for exchanging information between
a server and an external application

. Under this protocol, the external application

IS run upon each request (I.e., a new process
IS created), and this application closes after
delivering output to the server

. PHP was originally designed to run as a set

of CGI binaries

. #!/usr/local/bin/php



Theory: Apache Modules

. Rather than creating an instance of a
process for every request, Apache provides
functionality for persistent modules to run

. These modules can handle certain types of
requests indefinitely without terminating

. PHP has been adapted to run as an Apache
module, as well, and was used this way In

the Web Security lab



I Apache Module vs. CGI Binaries

. PHP as an Apache module yields speed
- Only one instance of PHP, the module itself,
needs to be running at one time
- Resources such as dedicated connections to a
MySQL database can be preserved across
sessions

. Also, this allows PHP to be configured via
.htaccess directives — an Apache-specific
function

I . Which is optimal for running PHP?



I Apache Module vs. CGI Binaries

Database and Database and
other resources other resources



Apache Module vs. CGI Binaries

. However, Apache runs as a separate user,
inheriting permissions of “nobody” -- thus all
resources PHP uses must be accessible to

“nobody” as well

. PHP as a CGI binary favors security
- CGI binaries can interface with an Apache
module (such as suEXEC or suPHP) to run as a
separate user
- This allows separate permissions for multiple
users and multiple resource needs in a shared
hosting environment



Apache Module vs. CGI Binaries

User: apache (nobody)

Apache

l

With suEXEC or suPHP

Database and
other resources

Apache

l

User: file owner

Database and
other resources



Apache Module vs. CGI Binaries

With suEXEC or suPHP

Apache Apache

User secureddata.com chroot

User hackworld.com chroot

[etc/passwd [etc/passwd
World Readable r - x

Edit anything writeable rw x Locked per user directory




PHP Safe Mode

. As an alternative to running PHP as a CGl
binary for increased permissions security,
PHP provides the Safe Mode configuration
. Provides user permissions security

. Places limitations on the file structure PHP
can access (PHP fopen)

. Can disable the use of certain potentially
vulnerable functions



PHP Safe Mode

. However, such restrictions are considered
“architecturally incorrect” -- PHP itself is
blocking and manipulating its own normal
operation
. Can easily be bypassed if functions are
allowed to execute on command line

exec (“cat stuff >> /etc/passwd”)
. Will not be included in future versions PHP 6
and beyond
. Still, frequently used by many hosts




Alternative Solutions:
ModSecurity

. ModSecurity iIs an Apache module designed
as a web application firewall

. Operates at application layer

- Protocol-level firewalls used in routers and
gateway-level machines usually filter traffic
based on source and destination

- ModSecuirity is generally used to filter traffic
based upon the contents — including both the
headers and payload data

. Rules-based, applied before sending traffic to
handling application or module



I Alternative Solutions:
I ModSecurity

I Default rules block

. Protocol violations

. Protocol anomalies

. Request Limits

. Http Policy

. Bad Robots

. Generic Attacks

. Trojans

. Outbound Connections




Alternative Solution: Suhosin
and PHP-Hardening Patch

. Provides a third-party alternative to manual
configuration solutions previously discussed
. Protects against known vulnerabilities such
as buffer overflows, as well as PHP core
vulnerabilities that could potentially be
exploited

. Similar in concept to libsafe and other patch-
based protection schemes



In the Lab

. Part I: Analyze PHP as an Apache module
and Safe Mode as a security option

. Part Il: Analyze PHP as a CGI binary and
SuPHP as a flexibility extension

. Part lll: Explore mod_security as an
application-layer firewall solution to security
exploits



Part I: Apache Module

PHP Is already installed in lab as an Apache
module from Web Security lab

grabfile.php and newfile.php: test PHP's
permissions for reading, writing, and
modn’ylng files

Mozilla Firefox

F|Ie Edit View Go Bookmarks Tools Help

<1,:| < Elr> < @E (jn\[ L| http://localhost/php/grabfile.php @ Go |[CL

[ | Red Hat Network | | Red Hat, Inc. [ JSupport [ J5hop | Products | Training

[+]

Executing whoami: nobody
Executing useradd phpuser:

Reading fetc/passwd file:

root:x:0:0:root/root/bin/bash bin:x:1:1:bin:/bin:/shin/nologin daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:admevar/fadm:/sbin/nologin Ip:x:4:7:lpi/varfspool/lpd:/sbin/nologin syne:x:5:0:sync:/sbhin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/shin/shutdown halt:x:7:0:halt:/sbin:/sbin/halt



Part I: Apache Module

Permission issue example: separate user,
ftpuser, attempting to modify an example file
written b PHP/Aache _________________

Eile Edit Wiew Terminal Tabs Help

[root@groupl newfile]# gedit newfile.txt
[root@groupl newfile]# cd ..

[root@groupl phpl# cd newfile

[rootl@groupl newfile]# dir

newfile. txt

[root@groupl newfile]# 1s

newfile, txt

[root@groupl newfile]# ftp localhost

Connected to groupl.4112-86.mininet.org.

220 groupl.4112-86.mininet.org FTP server (Version wu-2.6.1-18) ready.

530 Please login with USER and PASS.

530 Please login with USER and PASS.

KERBEROS_V4 rejected as an authentication type

Name (localhost:root): ftpuser

331 Password required for ftpuser.

Password:

230 User ftpuser logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> send newfile.txt

local: newfile.txt remote: newfile.txt

227 Entering Passive Mode (127,0,0,1,88,242)

553 newfile.txt: Permission denied. I
kf‘t];:u:: D




Part |: Safe Mode

. Safe Mode is then enabled via php.ini, and
the tests repeated, as well as including
remote scripts in PHP files

Mozilla Firefox

File Edit View Go Bookmarks Tools Help

‘/\::I hd E:> hd 1%1 éjﬂ L1 http:/flocalhost/php/grabfile.php @ Go |CL

|| Red Hat Network | | Red Hat, Inc. | Support " Shop | ] Products | Training

|_ phpinfo() || http://localhost/php/grabfile.php | B
[+]

Warning: exec() has been disabled for security reasons in /home/apache2/htdocs/php/grabfile.php on line 3

Executing whoami:

Warning: exec() has been disabled for security reasons in /home/apache2/htdocs/php/grabfile.php on line 5

Executing useradd phpuser: |
Warning: file_get_contents(): open_basedir restriction in effect. File(/etc/passwd) is not within the allowed path(s):
(/home/apache2/htdocs) in /home/apache2/htd ocs/php/grabfile.php on line 7

Warning: file_get_contents(/etc/passwd): failed to open stream: Operation not permitted in

/home/apache2/htd ocs/php/grabfile.php on line 7

Reading /etc/passwd file: [=]
Ed Find: | mod_sec © Find Next © Find Previous [=|Highlight all [] Match case ]} Reached end of page, cor

Done



Part II: PHP as a CGI Binary

. Apache is then installed as a CGI binary, and
http.conf is modified accordingly

. The tests are then repeated — still runs as
“nobody” user

File Edit View Go Bookmarks Tools Help

<1,:| v Elr> M ﬁ-yﬁ (ﬁ\[ [ http:/flocalhost/php/grabfile. php @ Go |[CL

[ | Red Hat Network | | Red Hat, Inc. [ JSupport [ J5hop | Products | Training

[+]

Executing whoami: nobody
Executing useradd phpuser:

Reading fetc/passwd file:

root:x:0:0:root/root/bin/bash bin:x:1:1:bin:/bin:/shin/nologin daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:admevar/fadm:/sbin/nologin Ip:x:4:7:lpi/varfspool/lpd:/sbin/nologin syne:x:5:0:sync:/sbhin:/bin/sync

shutdown:x:6:0:shutdown:/sbinysbinfshutdown halt:x:7:0:halt:/sbin:/sbin/halt



Part Il: suPHP

. SUPHP iIs then installed, and tests run again
. In this case, scripts are set to run as their

owner, thus ftpuser can modify file created by
ItS own scripts

W

File Edit Wiew Go Bookmarks Tools Help

<::| - N @E {’,ﬁ | http:/flocalhost/php/newfile.php @ Go |[GL

[ | Red Hat Metwork | | Red Hat, Inc. ' Support | JShop | JProducts | Training

is_writable('newfile.txt"): 1



I Part lll: ModSecurity

. mod_security Is then installed, and a few
I example rules are given
. A number of previous exploits are then
attempted, and the results examined

SecRule REQUEST_FILENAMElARGS WSELECT COUNT”
“deny, log,auditlog,status:400,msg:’ SELECT COUNT query denied’

File Edit View Go Bookmarks Tools Help
E-op- & ©2) | 1 »2msg_id=(SELECT%20COUNT("%20FROM%20users) |¥| © Go |[Cl,

[ | Red Hat Network || Red Hat, Inc. | Support | JShop | Products | Training

| || phpinfol() | | 400 Bad Request | % |

Bad Request

Your browser sent a request that this server could not understand.



Conclusions

. PHP run as an Apache module and as a CGl
binary both have benefits and drawbacks

. Specific implementation depends upon the
needs of the host, and of the webmasters
using the host



Conclusions

. Companies and individuals should be familiar
with the global platform and configuration of
their chosen hosts

. Especially in shared hosting environments,
users may not have the option of changing
their configuration at will



Conclusions

. Hosts should be aware of the pros and cons
of the hosting configuration(s) they offer, and
be prepared to deal with updates

. For instance, PHP as an Apache module
running in safe mode Is very prevalent, but
will soon be phased out — hosts must deal

with this change



Questions?



