
Securing Apache and PHP

Justin Mayhue and Christopher Pau

Motivation

● Via LAMP (Linux, Apache, MySQL, and
PHP) web hosts have a popular, free
OS/software solution

● According to Netcraft, over 47% of
webservers use the Apache as of October
2007

● Popularity makes for an easy target, as
oftentimes configurations are not well
thought-out

Who should be concerned?

● Webmasters – installation of scripts
(permissions errors: chmod 777? 755?)

● Web Developers – creating software for
various configurations (what is enabled?
Disabled?)

● Web Hosts – security of their server and
possible abuse

● Average Users – where is their data saved?
Who can access it? How is it secured?

Background: Apache

● Free, open-source, Unix-based webserver
software available for Linux, Mac OSX,
Windows, and other platforms

● Design features revolve around modules
used to control, interpret, and deliver web
content to clients

● Supports virtual hosting – multiple users can
host independent sites on the same server
platform

Background: PHP

● PHP (PHP: Hypertext Processor) is a
scripting language aimed at creating dynamic
content

● Like Apache, it is free, open-source software
available for a variety of operating systems

● Works with Apache to filter user input and
provide content for Apache to serve back to
the users

Theory: CGI Binaries

● CGI (Common Gateway Interface) is a
protocol for exchanging information between
a server and an external application

● Under this protocol, the external application
is run upon each request (i.e., a new process
is created), and this application closes after
delivering output to the server

● PHP was originally designed to run as a set
of CGI binaries

● #!/usr/local/bin/php

Theory: Apache Modules

● Rather than creating an instance of a
process for every request, Apache provides
functionality for persistent modules to run

● These modules can handle certain types of
requests indefinitely without terminating

● PHP has been adapted to run as an Apache
module, as well, and was used this way in
the Web Security lab

Apache Module vs. CGI Binaries

● Which is optimal for running PHP?
● PHP as an Apache module yields speed

 Only one instance of PHP, the module itself,
needs to be running at one time

 Resources such as dedicated connections to a
MySQL database can be preserved across
sessions

● Also, this allows PHP to be configured via
.htaccess directives – an Apache-specific
function

Apache Module vs. CGI Binaries

Apache

Worker - PHP

Worker - PHP

Worker - PHP

Worker - PHP

Database and

other resources

Apache

Worker - CGI

Worker - CGI

Worker - CGI

Worker - CGI

Database and

other resources

PHP

PHP

PHP

PHP

Apache Module vs. CGI Binaries

● However, Apache runs as a separate user,
inheriting permissions of “nobody” -- thus all
resources PHP uses must be accessible to
“nobody” as well

● PHP as a CGI binary favors security
 CGI binaries can interface with an Apache

module (such as suEXEC or suPHP) to run as a
separate user

 This allows separate permissions for multiple
users and multiple resource needs in a shared
hosting environment

Apache Module vs. CGI Binaries

Apache

Worker - PHP

Worker - PHP

Worker - PHP

Worker - PHP

Database and

other resources

Apache

Worker - CGI

Worker - CGI

Worker - CGI

Worker - CGI

Database and

other resources

PHP

PHP

PHP

PHP

User: apache (nobody)

User: file owner

With suEXEC or suPHP

Apache Module vs. CGI Binaries

Apache

/path/to/SecuredData.com

/etc/passwd

Apache

/etc/passwd

With suEXEC or suPHP

/path/to/HackWorld.com

World Readable r - x

/path/to/SecuredData.com

/path/to/HackWorld.com

Edit anything writeable r w x

User secureddata.com chroot

User hackworld.com chroot

Locked per user directory

PHP Safe Mode

● As an alternative to running PHP as a CGI
binary for increased permissions security,
PHP provides the Safe Mode configuration

● Provides user permissions security
● Places limitations on the file structure PHP

can access (PHP fopen)
● Can disable the use of certain potentially

vulnerable functions

PHP Safe Mode

● However, such restrictions are considered
“architecturally incorrect” -- PHP itself is
blocking and manipulating its own normal
operation

● Can easily be bypassed if functions are
allowed to execute on command line
 exec(“cat stuff >> /etc/passwd”)

● Will not be included in future versions PHP 6
and beyond

● Still, frequently used by many hosts

Alternative Solutions:
ModSecurity

● ModSecurity is an Apache module designed
as a web application firewall

● Operates at application layer
 Protocol-level firewalls used in routers and

gateway-level machines usually filter traffic
based on source and destination

 ModSecurity is generally used to filter traffic
based upon the contents – including both the
headers and payload data

● Rules-based, applied before sending traffic to
handling application or module

Default rules block

Alternative Solutions:
ModSecurity

● Protocol violations

● Protocol anomalies

● Request Limits

● Http Policy

● Bad Robots

● Generic Attacks

● Trojans

● Outbound Connections

Alternative Solution: Suhosin
and PHP-Hardening Patch

● Provides a third-party alternative to manual
configuration solutions previously discussed

● Protects against known vulnerabilities such
as buffer overflows, as well as PHP core
vulnerabilities that could potentially be
exploited

● Similar in concept to libsafe and other patch-
based protection schemes

In the Lab

● Part I: Analyze PHP as an Apache module
and Safe Mode as a security option

● Part II: Analyze PHP as a CGI binary and
suPHP as a flexibility extension

● Part III: Explore mod_security as an
application-layer firewall solution to security
exploits

Part I: Apache Module

● PHP is already installed in lab as an Apache
module from Web Security lab

● grabfile.php and newfile.php: test PHP's
permissions for reading, writing, and
modifying files

Part I: Apache Module

● Permission issue example: separate user,
ftpuser, attempting to modify an example file
written by PHP/Apache

Part I: Safe Mode

● Safe Mode is then enabled via php.ini, and
the tests repeated, as well as including
remote scripts in PHP files

Part II: PHP as a CGI Binary

● Apache is then installed as a CGI binary, and
http.conf is modified accordingly

● The tests are then repeated – still runs as
“nobody” user

Part II: suPHP

● suPHP is then installed, and tests run again
● In this case, scripts are set to run as their

owner, thus ftpuser can modify file created by
its own scripts

Part III: ModSecurity

● mod_security is then installed, and a few
example rules are given

● A number of previous exploits are then
attempted, and the results examined

SecRule REQUEST_FILENAME|ARGS “SELECT COUNT”

“deny,log,auditlog,status:400,msg:’SELECT COUNT query denied’”

Conclusions

● PHP run as an Apache module and as a CGI
binary both have benefits and drawbacks

● Specific implementation depends upon the
needs of the host, and of the webmasters
using the host

Conclusions

● Companies and individuals should be familiar
with the global platform and configuration of
their chosen hosts

● Especially in shared hosting environments,
users may not have the option of changing
their configuration at will

Conclusions

● Hosts should be aware of the pros and cons
of the hosting configuration(s) they offer, and
be prepared to deal with updates

● For instance, PHP as an Apache module
running in safe mode is very prevalent, but
will soon be phased out – hosts must deal
with this change

Questions?

