Bash 101

Intro to Shell Scriptinc

PLUG North 2011-02-08
PLUG West 2011-02-21

Updated: 2011-02-22

JP Vossen, CISSP
bashcookbook.com

http://www.jpsdomain.org/public/2011_bash_101.pdf
http://www.jpsdomain.org/public/2011_bash_ 101.odp

http://www.jpsdomain.org/public/2011_bash_101.pdf
http://www.jpsdomain.org/public/2011_bash_101.odp

= What is a “shell” and a “shell script?”

= Why should | care?

= How do | get started?

= Prompts, positional parameters & STDIO
= Anatomy of ‘cdburn’

= Programming bash

= What did we miss?

= What about Windows?

= What next?

= URLs, Wrap up and Q&A

What is a “shell?”

= A program that provides an interface to an
operating system (which is itself an interface to
the hardware)

= May be CLI or GUI

= CLI = command line interface
= GUI = graphical user interface

= May have more than one available

= Bourne (sh), Bourne Again Shell (bash), Korn (ksh)
= zsh, fish, csh, tcsh, many, many others

= CDE, Gnome, KDE, Presentation Manager,
Workplace Shell, many, many others

What is a “shell script?”

= Fundamentally just a list of commands to run

= May use arguments and variables various control
logic and arithmetic to figure out what or run when

= pash is integer only, other shells may not be
= Plain text file
= Used on CLI only

= Builds on:
= The “Unix” tool philosophy
= The “Unix” everything-is-a-file philosophy

Why should | care?

= You can write new commands!

= Save time & effort and make life easier

= E.g., if you always type in four commands to
accomplish some task, type them once into an editor,
add a “shebang” line and comments, save and set
execute permissions. You now have a shell script!

Automation
= cron
= Consistency & Reliability

= (Process) Documentation
= One-liners

How do | get started?

= Fire up an editor

= #l/bin/bash -
echo 'Hello world, my first shell script!’

= chmod +r script
= bash 'help' command!
= 'help set' vs. 'man set'

= Most of a Linux system is run by shell scripts.
They are everywhere, find some and read

them.
= Everything in /etc/init.d/

= foriin /bin/*; do file $i | grep -q 'shell script' && echo
$i; done # You will be surprised!

A Word About Prompts

= http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html
= PS1 is the interactive prompt (default \s-\\\$ ', varies by distro)

= PS1="n[\u@\h:T\I:LSSHLVL:C\!:J\j:\D{%Y-%m-%d_%H:%M:%S
%Z}\n$PWD\$ '

= [user@hostname:T0:1.1:C924:J0:2011-02-08 17:42:33 EST]
/home/user/Documents/Presentations$

= PS2 is the continuation prompt (default is "> ' which is OK)

- PS2=">'
= PS3is the 'select’ prompt (default of '#7 ' is kinda useless)

= PS3="
= PS4 is the debug (trace) prompt (default of '+ ' is kinda useless)

= PS4="+xtrace SLINENO:"

http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html

Positional Parameters

= “Main” script:
$0 $1 %2 $3

myscript foo bar baz
= $# = number of parms

= $* =“$1 $2 $3” # a single string of all parms,
separated by first character of SIFS (Internal
Field Separator)

= ‘Y@ = “$17 “$2” .. “SN” # For re-use later
= Reset inside a function

= $1 = first arg to function, not script
= But use SFUNCNAME instead of $0

Standard Input, Output & Error

http://en.wikipedia.org/wiki/Standard _streams

STDIN = standard input, usually from the
keyboard or another program via a pipeline or
redirection

STDOUT = standard output, to terminal,
pipeline or redirection

= echo 'Hello World!'

STDERR = standard error, to terminal, pipeline
or redirection but allows errors to be seen even
if STDOUT is piped or redirected

= echo "World Hello!" >&2

http://en.wikipedia.org/wiki/Standard_streams

Anatomy 1

= “Shebang” line — /bin/sh -ne /bin/bash
#!/bin/sh -

#!/bin/bash -
#!/usr/bin/env bash

= Comment line
name--description
cdburn--Trivially burn ISO images to disc

= Version control line (optional, depends)
31d$
VERSION="$Version: 1.1 $' # CVS/SVN
VERSION='ver 1.2.3' # Hard-code

Anatomy 2: Usage

if [||$1|| — Il_hll _O ||$1|| —_ "__help" _O _Z ||$1||]; then
cat <<-EoU

$0 $VERSION

Trivially burn ISO images to disc
Usage: $0 </path/to/iso>
e.g. $0 /home/jp/CD-image/image.iso

EoU
exit 1 # or 'exit 0'?
fi

Anatomy 3: Sanity Checks

speed=" # Use burner default (2x ' not %)
Make sure we have a burner
if [-x/usr/bin/wodim]; then

Debian, Ubuntu
CDBURNER="/usr/bin/wodim’

elif [-x /usr/bin/cdrecord]; then

CentOS, etc.
CDBURNER="/usr/bin/cdrecord'

else

echo "FATAL: Can't find wodim or cdrecord! Is either
installed?"
exit 1

fi

Anatomy 4: guts

ISO=||$1 "

[-r"$ISO" || {

echo "FATAL: ISO '$ISO' not found or not
readable!”

exit 2

J

PS4=" # Thatis'and’, not"
set -x # “debug”; will display cmd then run it

$CDBURNER -v -eject -dao $speed
padsize=63s -pad "$ISO"

= The code (“guts™) that actually does the work is
usually only a tiny amount of code.

= 70-95% of the code is usually the “user
interface:”

= Prevent mistakes
= Give useful feedback

= Code for GUI's (Graphical User Interfaces) is
even worse; it's larger and almost all of the
code Is “interface” with only a tiny bit being
guts.

“Programming” bash

= programming language
= basic operation is invocation = you run stuff

= variables
= integers
= strings
= arrays
= control structures
= Branching / conditionals
= looping

debugging

= PS4="+xtrace $LINENO:"'

= First character is duplicated to show nesting level,
that's why | have '+' there

= SLINENO should be in the default PS4 prompt!

= bash -n path/to/script # gross syntax check
= bash -x path/to/script # debug

= set-x & set +x # debug on / off
= set-v&set+v #verbose on/ off

= The shell re-writes the line
= White space is a delimiter!
= Quoting
= Use ''unless you are interpolating $variables, then use

= echo 'foo’
= echo "$foo"
= grep 'foo' /path/to/file
= grep "$regex" /path/to/file
= Except when it's not. Can make your head hurt.

= USE GOOD NAMES!!!

= No $ or spaces around = when assigning:
foo='bar
foo="bar$baz"

= $ when referencing value:
echo "$foo"

= Append:
foo="%foo bar"

= Needs ${} if variable followed by [a-zA-Z_0-9]
foo="foo $bar baz" # OK
foo="foo${bar}baz" # Sbar needs ${}

Command Substitution

= Old way (backticks):

= New way, easier to read and nest:
5()

= Example:
lines_in_file=%(wc -l $file | awk {print $1}')

= The effect is to pull outside data into your script,
which is terribly useful.

/O Redirection

= command > output
Is > mydir.txt # create or truncate
Is >> mydir.txt # create or append

= command < input
wc < mydata

= command1 | command2 # AKA pipeline
Is | wc -

= cmd > outfile 2> errfile

= cmd > logfile 2>&1 # or just >&

« cmd 2>&1 | next command

If .. then .. else .. fi

= if ["$1" ="-h" -0 "$1" = "--help" -0 -z "$1"]; then
stuff
elif grep -q "$pattern” "$file”; then
stuff
else
stuff
fi

= grep -q "$pattern” "$file" && {
echo "Found '$pattern’ in '$file'!"
exit 0
HIA
echo "Did not find '$pattern’ in '$file'!"
exit 1

}

= Execute commands for each member in a list

= foriin /bin/*; do file $i | grep -q 'shell script' && echo
$i; done
for iin /bin/*; do
file $i | grep -q 'shell script' && echo $i
done

for octet in $(seq 1 10); do host 192.168.1.%octet; done
| grep -v'NXDOMAIN)$'

for partition in 1 2 3; do mdadm --add
/dev/imd$partition /dev/sda$partition; done

for file in *.JPG; do echo mv %file ${file/JPG/jpg}; done

case .. €sacC

= “Execute commands based on pattern
matching”

case "SHOSTNAME" in
drake™) speed='speed=24" ;;
ringo*) speed="'speed=48' ;;
*) speed='speed=4' ;;

€eSacC

select .. done

= Sort-of trivially create a user menu

= “Sort-of” because you need to get your logic right

= Trivial example without any error or other checking
or an “exit” option:

PS3='Choose a file: '
select file in $dir/*; do

echo "$file" && break
done

= "here-document’

= Must use TAB, not space to indent when using '<<-'lll
= cat <<EoF cat <<-EoF
= cat <<'EoF’ cat <<-'EoF’

= Comments

= May be stand-alone or in-line after code

= # Stand-alone comment

= Is -la /root # Long list including hidden files of
/root

= In-line POD (Perl's Plain Old Documentation)

= pod2html, pod2latex, pod2man, pod2text, pod2usage

= Use a NoOp + here-document
= : <<'POD'

= There's a bunch of ways to declare them, | like:

= function foo {
<code goes here>

}
= 31, $2 .. $N get reset inside the function

= Use SFUNCNAME instead of $0
= Can also use 'local' keyword for scope

= CAN'T pass values back out like you'd expect!!!
= Either set GLOBAL variables

= Except watch out for subshells (including ‘|')!!!
= OR output results and call function in a $()

Function choose_file

H++++++++++++++++

“Return” the file name chosen (not for production use)
Called like: file=%(_choose file <dir>)
function _choose file {

local dir="%1"

PS3='Choose a file: '

select file in $dir/*; do

echo "$file" && break
done

} # end of function _choose file

Revision Control

= Qut of scope here, except that you want some.

= Lots of resources out there.

= http://www.jpsdomain.org/public/PANTUG 2007-
06-13 appd=Revision Control=JP.pdf

= Trivial case.

= aptitude install bzr
cd /path/to/scripts
bzr init
bzr add *
bzr ci

What did we miss?

Well, almost everything, entire books have
been written, 1 hour isn't going to cover it.

for ((expr1 ; expr2 ; expr3)) ; do list; done
while list; do list; done

until list; do list; done

Pattern Matching:

= ${variab
= ${variab
= ${variab

e#pattern} ${variable#ttpattern}
e%pattern} ${variable%%pattern}
e/pattern/string} ${variable//pattern/string}

What else did we miss?

= String Operations:
= ${variable:-word} # Return a default value
= ${variable:=word} # Set a default value
= ${variable:?word} # Catch undefined vars
= ${variable:+word} # Test existence

= ${variable:offset:length} # Substrings

= Aliases (& \unalias)
= | ots, lots, lots more...

What about Windows?

bash comes on a Mac, but not on Windows.

Windows 'cmd.exe' is actually much more powerful
than most people realize, but it still pales in
comparison to any decent Unix/Linux shell.

= http://www.jpsdomain.org/windows/winshell.ntml
Use Cygwin: http://www.cygwin.com/

Use the UnxUtils: http://unxutils.sourceforge.net/

Use the GNU Win32 ports:
http://sourceforge.net/projects/gnuwin32/

Use Perl, Python or some other tool

= http://www.activestate.com/solutions/perl/, etc.

http://www.jpsdomain.org/windows/winshell.html
http://www.cygwin.com/
http://unxutils.sourceforge.net/
http://sourceforge.net/projects/gnuwin32/
http://www.activestate.com/solutions/perl/

What next?

= Books
= Learning the bash Shell
= Bash Cookbook
= Classic Shell Scripting

= Web

= http://www.bashcookbook.com/bashinfo/
= Google
= Everywhere

= Revision Control

= Bazaar (BZR), git, Subversion (SVN), many others
= Avoid CVS if possible, it's too old and crufty

http://www.bashcookbook.com/bashinfo/

URLSs, Wrap-up and Q&A

= URLSs:

= TONS of resources: http://www.bashcookbook.com/bashinfo/

= These slides: http://www.jpsdomain.org/public/2011_bash_101.pdf
http://www.jpsdomain.org/public/2011_bash_101.odp

= Bash vs. Dash: http://princessleia.com/plug/2008-JP_bash_vs_ dash.pdf and
aptitude install devscripts then use checkbashisms

= The sample script: http://www.jpsdomain.org/public/cdburn

= STDIN, STDOUT, STDERR: http://en.wikipedia.org/wiki/Standard_streams

= Revision Control: http://www.jpsdomain.org/public/PANTUG_2007-06-13_appd=Revision_Control=JP.pdf
= Windows Shell Scripting (cmd.exe): http://www.jpsdomain.org/windows/winshell.html

= BASH Prompt HOWTO: http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html

= Cygwin: http://www.cygwin.com/

= UnxUtils: http://unxutils.sourceforge.net/

= GNU Win32 ports: http://sourceforge.net/projects/gnuwin32/

= Win32 Perl http://www.activestate.com/solutions/perl/

= Questions?
= |I'm on the PLUG list... jp@jpsdomain.org

= Some of these slides were adapted from 2007 Ubuntu Live presentation by Carl
Albing & JP Vossen: “bash from beginner to power user”

http://www.bashcookbook.com/bashinfo/
http://www.jpsdomain.org/public/2011_bash_101.pdf
http://www.jpsdomain.org/public/2011_bash_101.odp
http://princessleia.com/plug/2008-JP_bash_vs_dash.pdf
http://www.jpsdomain.org/public/cdburn
http://en.wikipedia.org/wiki/Standard_streams
http://www.jpsdomain.org/public/PANTUG_2007-06-13_appd=Revision_Control=JP.pdf
http://www.jpsdomain.org/windows/winshell.html
http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html
http://www.cygwin.com/
http://unxutils.sourceforge.net/
http://sourceforge.net/projects/gnuwin32/
http://www.activestate.com/solutions/perl/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

