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What is a “shell?”

= A program that provides an interface to an
operating system (which is itself an interface to
the hardware)

= May be CLI or GUI

= CLI = command line interface
= GUI = graphical user interface

= May have more than one available

= Bourne (sh), Bourne Again Shell (bash), Korn (ksh)
= zsh, fish, csh, tcsh, many, many others

= CDE, Gnome, KDE, Presentation Manager,
Workplace Shell, many, many others



What is a “shell script?”

= Fundamentally just a list of commands to run

= May use arguments and variables various control
logic and arithmetic to figure out what or run when

= pash is integer only, other shells may not be
= Plain text file
= Used on CLI only

= Builds on:
= The “Unix” tool philosophy
= The “Unix” everything-is-a-file philosophy



Why should | care?

= You can write new commands!

= Save time & effort and make life easier

= E.g., if you always type in four commands to
accomplish some task, type them once into an editor,
add a “shebang” line and comments, save and set
execute permissions. You now have a shell script!

Automation
= cron
= Consistency & Reliability

= (Process) Documentation
= One-liners



How do | get started?

= Fire up an editor

= #l/bin/bash -
echo 'Hello world, my first shell script!’

= chmod +r script
= bash 'help' command!
= 'help set' vs. 'man set'

= Most of a Linux system is run by shell scripts.
They are everywhere, find some and read

them.
= Everything in /etc/init.d/

= foriin /bin/*; do file $i | grep -q 'shell script' && echo
$i; done # You will be surprised!



A Word About Prompts

= http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html
= PS1 is the interactive prompt (default \s-\\\$ ', varies by distro)

= PS1="n[\u@\h:T\I:LSSHLVL:C\!:J\j:\D{%Y-%m-%d_%H:%M:%S
%Z}\n$PWD\$ '

= [user@hostname:T0:1.1:C924:J0:2011-02-08 17:42:33 EST]
/home/user/Documents/Presentations$

= PS2 is the continuation prompt (default is "> ' which is OK)

- PS2=">'
= PS3is the 'select’ prompt (default of '#7 ' is kinda useless)

= PS3="
= PS4 is the debug (trace) prompt (default of '+ ' is kinda useless)

= PS4="+xtrace SLINENO:"


http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html

Positional Parameters

= “Main” script:
$0 $1 %2 $3

myscript foo bar baz
= $# = number of parms

= $* =“$1 $2 $3” # a single string of all parms,
separated by first character of SIFS (Internal
Field Separator)

= ‘Y@ = “$17 “$2” .. “SN” # For re-use later
= Reset inside a function

= $1 = first arg to function, not script
= But use SFUNCNAME instead of $0



Standard Input, Output & Error

http://en.wikipedia.org/wiki/Standard _streams

STDIN = standard input, usually from the
keyboard or another program via a pipeline or
redirection

STDOUT = standard output, to terminal,
pipeline or redirection

= echo 'Hello World!'

STDERR = standard error, to terminal, pipeline
or redirection but allows errors to be seen even
if STDOUT is piped or redirected

= echo "World Hello!" >&2


http://en.wikipedia.org/wiki/Standard_streams

Anatomy 1

= “Shebang” line — /bin/sh -ne /bin/bash
#!/bin/sh -

#!/bin/bash -
#!/usr/bin/env bash

= Comment line
# name--description
# cdburn--Trivially burn ISO images to disc

= Version control line (optional, depends)
# 31d$
VERSION="$Version: 1.1 $' # CVS/SVN
# VERSION='ver 1.2.3' # Hard-code



Anatomy 2: Usage

if [ ||$1|| — Il_hll _O ||$1|| —_ "__help" _O _Z ||$1|| ]; then
cat <<-EoU

$0 $VERSION

Trivially burn ISO images to disc
Usage: $0 </path/to/iso>
e.g. $0 /home/jp/CD-image/image.iso

EoU
exit 1 # or 'exit 0'?
fi



Anatomy 3: Sanity Checks

speed=" # Use burner default (2x ' not %)
# Make sure we have a burner
if [-x/usr/bin/wodim ]; then

# Debian, Ubuntu
CDBURNER="/usr/bin/wodim’

elif [ -x /usr/bin/cdrecord ]; then

# CentOS, etc.
CDBURNER="/usr/bin/cdrecord'

else

echo "FATAL: Can't find wodim or cdrecord! Is either
installed?"
exit 1

fi



Anatomy 4: guts

ISO=||$1 "

[-r"$ISO" || {

echo "FATAL: ISO '$ISO' not found or not
readable!”

exit 2

J

PS4=" # Thatis'and’, not"
set -x # “debug”; will display cmd then run it

$CDBURNER -v -eject -dao $speed
padsize=63s -pad "$ISO"



= The code (“guts™) that actually does the work is
usually only a tiny amount of code.

= 70-95% of the code is usually the “user
interface:”

= Prevent mistakes
= Give useful feedback

= Code for GUI's (Graphical User Interfaces) is
even worse; it's larger and almost all of the
code Is “interface” with only a tiny bit being
guts.



“Programming” bash

= programming language
= basic operation is invocation = you run stuff

= variables
= integers
= strings
= arrays
= control structures
= Branching / conditionals
= looping



debugging

= PS4="+xtrace $LINENO:"'

= First character is duplicated to show nesting level,
that's why | have '+' there

= SLINENO should be in the default PS4 prompt!

= bash -n path/to/script # gross syntax check
= bash -x path/to/script # debug

= set-x & set +x  # debug on / off
= set-v&set+v #verbose on/ off



= The shell re-writes the line
= White space is a delimiter!
= Quoting
= Use ''unless you are interpolating $variables, then use

= echo 'foo’
= echo "$foo"
= grep 'foo' /path/to/file
= grep "$regex" /path/to/file
= Except when it's not. Can make your head hurt.



= USE GOOD NAMES!!!

= No $ or spaces around = when assigning:
foo='bar
foo="bar$baz"

= $ when referencing value:
echo "$foo"

= Append:
foo="%foo bar"

= Needs ${} if variable followed by [a-zA-Z_0-9]
foo="foo $bar baz" # OK
foo="foo${bar}baz" # Sbar needs ${}



Command Substitution

= Old way (backticks):

= New way, easier to read and nest:
5()

= Example:
lines_in_file=%(wc -l $file | awk {print $1}')

= The effect is to pull outside data into your script,
which is terribly useful.



/O Redirection

= command > output
Is > mydir.txt # create or truncate
Is >> mydir.txt  # create or append

= command < input
wc < mydata

= command1 | command2 # AKA pipeline
Is | wc -

= cmd > outfile 2> errfile

= cmd > logfile 2>&1 # or just >&

« cmd 2>&1 | next command



If .. then .. else .. fi

= if ["$1" ="-h" -0 "$1" = "--help" -0 -z "$1" ]; then
stuff
elif grep -q "$pattern” "$file”; then
stuff
else
stuff
fi

= grep -q "$pattern” "$file" && {
echo "Found '$pattern’ in '$file'!"
exit 0
HIA
echo "Did not find '$pattern’ in '$file'!"
exit 1

}



= Execute commands for each member in a list

= foriin /bin/*; do file $i | grep -q 'shell script' && echo
$i; done
for iin /bin/*; do
file $i | grep -q 'shell script' && echo $i
done

for octet in $(seq 1 10); do host 192.168.1.%octet; done
| grep -v'NXDOMAIN)$'

for partition in 1 2 3; do mdadm --add
/dev/imd$partition /dev/sda$partition; done

for file in *.JPG; do echo mv %file ${file/JPG/jpg}; done



case .. €sacC

= “Execute commands based on pattern
matching”

case "SHOSTNAME" in
drake™ ) speed='speed=24" ;;
ringo* ) speed="'speed=48' ;;
*)  speed='speed=4' ;;

€eSacC



select .. done

= Sort-of trivially create a user menu

= “Sort-of” because you need to get your logic right

= Trivial example without any error or other checking
or an “exit” option:

PS3='Choose a file: '
select file in $dir/*; do

echo "$file" && break
done



= "here-document’

= Must use TAB, not space to indent when using '<<-'lll
= cat <<EoF cat <<-EoF
= cat <<'EoF’ cat <<-'EoF’

= Comments

= May be stand-alone or in-line after code

= # Stand-alone comment

= Is -la /root # Long list including hidden files of
/root

= In-line POD (Perl's Plain Old Documentation)

= pod2html, pod2latex, pod2man, pod2text, pod2usage

= Use a NoOp + here-document
= : <<'POD'



= There's a bunch of ways to declare them, | like:

= function foo {
<code goes here>

}
= 31, $2 .. $N get reset inside the function

= Use SFUNCNAME instead of $0
= Can also use 'local' keyword for scope

= CAN'T pass values back out like you'd expect!!!
= Either set GLOBAL variables

= Except watch out for subshells (including ‘|')!!!
= OR output results and call function in a $()



Function choose_file

H++++++++++++++++

# “Return” the file name chosen (not for production use)
# Called like: file=%( _choose file <dir>)
function _choose file {

local dir="%1"

PS3='Choose a file: '

select file in $dir/*; do

echo "$file" && break
done

} # end of function _choose file



Revision Control

= Qut of scope here, except that you want some.

= Lots of resources out there.

= http://www.jpsdomain.org/public/PANTUG 2007-
06-13 appd=Revision Control=JP.pdf

= Trivial case.

= aptitude install bzr
cd /path/to/scripts
bzr init
bzr add *
bzr ci



What did we miss?

Well, almost everything, entire books have
been written, 1 hour isn't going to cover it.

for (( expr1 ; expr2 ; expr3 )) ; do list; done
while list; do list; done

until list; do list; done

Pattern Matching:

= ${variab
= ${variab
= ${variab

e#pattern} ${variable#ttpattern}
e%pattern} ${variable%%pattern}
e/pattern/string} ${variable//pattern/string}



What else did we miss?

= String Operations:
= ${variable:-word} # Return a default value
= ${variable:=word} # Set a default value
= ${variable:?word} # Catch undefined vars
= ${variable:+word} # Test existence

= ${variable:offset:length} # Substrings

= Aliases (& \unalias)
= | ots, lots, lots more...



What about Windows?

bash comes on a Mac, but not on Windows.

Windows 'cmd.exe' is actually much more powerful
than most people realize, but it still pales in
comparison to any decent Unix/Linux shell.

= http://www.jpsdomain.org/windows/winshell.ntml
Use Cygwin: http://www.cygwin.com/

Use the UnxUtils: http://unxutils.sourceforge.net/

Use the GNU Win32 ports:
http://sourceforge.net/projects/gnuwin32/

Use Perl, Python or some other tool

= http://www.activestate.com/solutions/perl/, etc.


http://www.jpsdomain.org/windows/winshell.html
http://www.cygwin.com/
http://unxutils.sourceforge.net/
http://sourceforge.net/projects/gnuwin32/
http://www.activestate.com/solutions/perl/

What next?

= Books
= Learning the bash Shell
= Bash Cookbook
= Classic Shell Scripting

= Web

= http://www.bashcookbook.com/bashinfo/
= Google
= Everywhere

= Revision Control

= Bazaar (BZR), git, Subversion (SVN), many others
= Avoid CVS if possible, it's too old and crufty


http://www.bashcookbook.com/bashinfo/

URLSs, Wrap-up and Q&A

=  URLSs:

= TONS of resources: http://www.bashcookbook.com/bashinfo/

= These slides: http://www.jpsdomain.org/public/2011_bash_101.pdf
http://www.jpsdomain.org/public/2011_bash_101.odp

= Bash vs. Dash: http://princessleia.com/plug/2008-JP_bash_vs_ dash.pdf and
aptitude install devscripts then use checkbashisms

= The sample script: http://www.jpsdomain.org/public/cdburn

= STDIN, STDOUT, STDERR: http://en.wikipedia.org/wiki/Standard_streams

= Revision Control: http://www.jpsdomain.org/public/PANTUG_2007-06-13_appd=Revision_Control=JP.pdf
= Windows Shell Scripting (cmd.exe): http://www.jpsdomain.org/windows/winshell.html

= BASH Prompt HOWTO: http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html

= Cygwin: http://www.cygwin.com/

= UnxUtils: http://unxutils.sourceforge.net/

= GNU Win32 ports: http://sourceforge.net/projects/gnuwin32/

= Win32 Perl http://www.activestate.com/solutions/perl/

= Questions?
= |I'm on the PLUG list... jp@jpsdomain.org

= Some of these slides were adapted from 2007 Ubuntu Live presentation by Carl
Albing & JP Vossen: “bash from beginner to power user”
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